UNIVERSITI PUTRA MALAYSIA

PHENOTYPIC AND GENOTYPIC CHARACTERIZATION OF STREPTOCOCCUS PNEUMONIAE ISOLATES AMONG HEALTHY CHILDREN IN KUALA LUMPUR AND SELANGOR, MALAYSIA

MASURA BINTI MOHD YATIM

FPSK(m) 2013 26
PHENOTYPIC AND GENOTYPIC CHARACTERIZATION OF
STREPTOCOCCUS PNEUMONIAE ISOLATES
among Healthy Children
in Kuala Lumpur and Selangor, Malaysia

By

MASURA BINTI MOHD YATIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the Requirements for the Degree of Master of Science

September 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PHENOTYPIC AND GENOTYPIC CHARACTERIZATION OF STREPTOCOCCUS PNEUMONIAE ISOLATES AMONG HEALTHY CHILDREN IN KUALA LUMPUR AND SELANGOR, MALAYSIA

By

MASURA BINTI MOHD YATIM

September 2013

Chairman: Siti Norbaya binti Masri, MD, MPath

Faculty: Faculty of Medicine and Health Sciences

There is scarce information about pneumococcal carriage among healthy children in Malaysia. The nasopharynx of human is well known as ecological reservoir of Streptococcus pneumoniae which is a precondition for developing pneumococcal diseases. Because the pneumococcal disease is common in children, this study was conducted to provide data on the prevalence rate, serotype distribution and antimicrobial susceptibility pattern of S. pneumoniae in the nasal carriage of healthy children. Further investigation such as pneumococcal surface protein A (PspA) family prevalence, clade distribution and its relatedness with pulsed-field gel electrophoresis (PFGE) patterns were also investigated.

Nasal swabs were collected from 195 healthy children age 5 years old or younger from June to December 2010 in three day care centers in Kuala Lumpur and Selangor. All S. pneumoniae isolates were successfully identified by both phenotypic and genotypic methods. The serotyping was performed using Pneumotest kit (Statens Serum Institut, Copenhagen, Denmark) and the antimicrobial susceptibility pattern was determined by using the E-test method (AB Biodisk, Solna, Sweden). PspA
family typing was done using polymerase chain reaction (PCR) and epidemiological study was investigated by PFGE.

S. pneumoniae was found in the nasal carriage of 35.4% (69/195) of children and this revealed an increasing trend of carriage prevalence among healthy children in Malaysia. Among the 69 isolates, penicillin resistant *S. pneumoniae* (PRSP) and multidrug resistant (more than two classes of antibiotic) *S. pneumoniae* (MDRSP) was 23.2% and 20.3% respectively. All 16 PRSP isolates were resistant to erythromycin and 14 PRSPs (87.5%) were resistant to cotrimoxazole. The six most common serotypes were 6A, 23F, 19A, 6B, 19F and 15C which were found in 87% of all isolates. The high rate of PRSP and MDRSP supports the need for continuing surveillance of pneumococcal carriage. In fact, data on surveillance of antimicrobial susceptibility pattern as well as serotype distribution also changed from time to time, emphasizing the need for continuing a surveillance study to keep in track the current situation.

Of the 69 isolates, 24.6% belonged to PspA Family 1, 71.0% were found to PspA Family 2 and 4.3% to PspA Family 3. With regard to vaccine serotypes coverage, 40.6% of the isolates belonged to serotypes included in the PCV7 and PCV10 and 81.1% included in the PCV13.

Even though conjugate vaccines from up to 13 serotypes have been developed, they only represent a limited number of serotypes, whereas over 90 serotypes exist. Due to the high cost and limited coverage, more effort is being focused to search for future vaccine candidates such as protein based vaccines which could cover the
whole population regardless of age as well as serotypes. By studying and exploring the pattern of distribution based on PspA typing, it would provide useful information for the suitability of this protein antigen as a vaccine candidate against pneumococcal population. In this finding, the major family was 1 and 2 (95.7%), thus making them suitable for future vaccines. In general, PFGE patterns of the pneumococcal isolates were genetically diverse, which suggest that the relationship between susceptibility pattern, PspA family types, PspA clades and PFGE patterns was independent.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

FENOTIPIK DAN PENCIRIAN GENOTIPIK ISOLAT STREPTOCOCUS PNEUMONIAE DI KALANGAN KANAK-KANAK SIHAT DI KUALA LUMPUR DAN SELANGOR, MALAYSIA

Oleh

MASURA BINTI MOHD YATIM

September 2013

Pengerusi: Siti Norbaya binti Masri, MD, Mpath

Fakulti: Fakulti Perubatan dan Sains Kesihatan

Maklumat berkaitan pembawa pneumokokus di kalangan kanak-kanak sihat di Malaysia adalah terhad. Perkembangan penyakit pneumokokal bermula apabila saluran pernafasan manusia yang juga merupakan takungan ekologi semulajadi didiami oleh bakteria Streptococcus pneumoniae. Memandangkan penyakit pneumokokus biasanya menimpa kanak-kanak, kajian ini dijalankan bagi menyediakan data berkaitan prevalen, taburan serotaip dan corak kepekaan antimikrobial di kalangan kanak-kanak sihat di Malaysia. Kajian lanjutan seperti prevalen keluarga pneumococcal surface protein A (PspA), taburan clade dan hubungkaitnya dengan corak pulsed-field gel electrophoresis (PFGE) juga dikaji.

Sampel kesatan hidung diambil daripada 195 orang kanak-kanak sihat yang berumur lima tahun dan ke bawah mulai Jun sehingga Disember 2010 dari tiga buah pusat jagaan harian di Kuala Lumpur dan Selangor. Sebanyak 69 isolat S. pneumoniae berjaya dikenalpasti melalui kaedah fenotipik dan genotipik. Penjenisan serotaip ditentukan menggunakan kit pneumostest (Staten Serum Institut, Copenhagen, Denmark) dan corak kepekaan antimikrobial ditentukan menggunakan kaedah E-test.
(AB Biodisk, Solna, Sweden). Pengkelasan keluarga PspA dijalankan menggunakan tindak balas rantai polimerase dan kajian epidemiologi dijalankan menggunakan PFGE.

Daripada keseluruhan 69 isolat, 24.6% adalah terdiri daripada keluarga PspA jenis 1, 71.0% PspA jenis 2 dan 4.3% keluarga PspA jenis 3. Berkaitan dengan rangkuman serotaip vaksin, 40.6% daripada isolat adalah terangkum dalam serotaip vaksin konjugat pneumokokus 7 valen dan 10 valen masing-masing, manakala 81.1% terangkum dalam serotaip vaksin konjugat pneumokokus valen 13.
Meskipun vaksin konjugat pneumokokus sehingga 13 valen telah dibangunkan, ianya terhad mewakili sebahagian serotaip berbanding dengan lebih daripada dari 90 jenis serotaip yang sedia ada. Memandangkan kos yang tinggi dan liputan yang terhad, banyak usaha telah dijalankan bagi mencari vaksin-vaksin baru untuk kegunaan pada masa depan seperti vaksin berasaskan protin yang boleh meliputi keseluruhan populasi penduduk tanpa mengira peringkat umur dan serotaip. Dengan mengkaji dan mempelajari corak taburan berasaskan pengkelasan keluarga PspA, maka ia dapat memberi maklumat berguna berkaitan kesesuaian antigen protin sebagai calon vaksin terhadap populasi pneumokokus. Secara keseluruhan, kajian ini mendapati, sebahagian besar keluarga PspA adalah jenis 1 dan 2 iaitu sebanyak 95.7%, dengan itu sesuai sebagai calon vaksin pada masa hadapan.

Secara keseluruhannya, corak PFGE terhadap isolat pneumokokus menunjukkan corak genotaip yang pelbagai dan ini mencadangkan perhubungan di antara corak kepekaan antibiotik, pengkelasan keluarga PspA, PspA clade berbanding corak PFGE adalah tiada saling berhubungkait.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr Siti Norbaya binti Masri for her guidance and support during my study. I am deeply grateful to my co-supervisor, Associate Professor Dr Mohd Nasir bin Mohd Desa for his guidance in molecular laboratory work. I would also like to express my million thanks to my co-supervisor Dr Niazlin binti Mohd Taib and Professor Datin Dr Farida Jamal for their informative knowledge and continuous guidance during the tenure of this course. I would like to thank Associate Professor Dr Cheah Yoke Kqueen for his help with the Bionumerics programme (PFGE). Not forget as well, all teaching and laboratory staff from the Department of Medical Microbiology and Parasitology especially all the lecturers whom have helped me during the course.

I would like to thank my friends (Shakira, Hanani, Shandra, Liew Yun Khoon, Chong Seng, Hamed, Zahra and Nurul Atiqah) who had shared with me their knowledge and ideas throughout the completion of laboratory experiments.

In addition, I would like to express my gratitude to the Ministry of Health (MOH) for providing me the scholarship to attend this course. Finally, I would like to thank my family for their support and enthusiasm shown during my study.
I certified that a Thesis Examination Committee has met on 18 September 2013 to conduct the final examination of Masura binti Mohd Yatim on her thesis entitled “Phenotypic and Genotypic Characterization of *Streptococcus pneumoniae* Isolates among Healthy Children in Kuala Lumpur and Selangor, Malaysia” in accordance with the Universities and Universities Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Wan Omar bin Abdullah, DVM, MSPH, MPH, PhD, DSc, FRIPHH, FACTM
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Patinah binti Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Rukman bin Awang Hamat, MBBS, Mpath
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Parasakthi Navaratnam, MBBS, MSc, FRCPath
Professor
Jeffrey Cheah School of Medicine and Health Sciences
Monash University of Malaysia
(External Examiner)

NORITAH OMAR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 20 November 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory were as follows:

Siti Norbaya binti Masri, MD, Mpath
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Mohd Nasir bin Mohd Desa, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

Niazlin binti Mohd Taib, MB BCh BAO, Mpath
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

Farida Fatema @ Farida Jamal, MBBS, MSc, MRCPath, FRCPath
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 December 2013
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

MASURA BINTI MOHD YATIM

Date: 18 September 2013
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 General Objective 4
1.2 Specific Objectives 4
1.3 Study Hypothesis 4

2 LITERATURE REVIEW
2.1 A Brief History of *Streptococcus pneumoniae* 5
2.2 Morphology and Identification of *Streptococcus pneumoniae* 5
2.3 Colonization and Disease 6
2.3.1 The Complexity of the Human Nasopharyngeal and Colonization 6
2.3.2 Colonization of *Streptococcus pneumoniae* in Children 7
2.3.3 Pathogenesis of Pneumococcal Disease 10
2.3.4 Pneumococcal Disease and Epidemiology 12
2.4 Pneumococcal Structure and Virulence Factors 13
2.4.1 Pneumococcal Cell Wall 13
2.4.2 The Pneumococcal Capsule 15
2.4.3 Pneumococcal Virulence Proteins 16
2.4.4 Pneumococcal Surface Protein A (PspA) 18
2.5 Susceptibility Pattern and Serotype Distribution of *Streptococcus pneumoniae* 23
2.5.1 Susceptibility Pattern of *Streptococcus pneumoniae* 23
2.5.2 Serotype Distribution of *Streptococcus Pneumoniae* 25
2.6 Prevention of Pneumococcal Infection
2.6.1 The Role of Vaccines
2.6.2 Pneumococcal Polysaccharide Vaccine (PPV)
2.6.3 Pneumococcal Conjugate Vaccine (PCV)
2.6.4 Pneumococcal Protein Vaccines Candidates

2.7 Molecular Epidemiology of Streptococcus pneumoniae by Pulsed-Field Gel Electrophoresis (PFGE)

3 MATERIALS AND METHODS
3.1 Samples
3.1.1 Study Design
3.1.2 Sample Size
3.1.3 Study Population
3.1.4 Inclusion Criteria and Exclusion Criteria
3.1.5 Sample Collection
3.2 Identification of Isolates
3.3 Preservation and Subculturing of Streptococcus pneumoniae
3.4 Serotyping of Streptococcus pneumoniae
3.5 Antimicrobial Susceptibility Testing (AST)
3.6 DNA Extraction
3.7 PCR Assay for Identification of Streptococcus pneumoniae
3.7.1 PCR Detection of Pneumolysin (ply) and Autolysin (lytA) Genes
3.8 PCR Assay for PspA Gene and PspA Family Typing
3.8.1 PCR Detection of PspA Gene
3.8.2 PCR Detection of PspA Family Typing
3.9 DNA Purification and Sequencing
3.10 Statistical Analysis and Interpretations of Data
3.11 Molecular Epidemiology: Pulsed-Field Gel Electrophoresis (PFGE)
3.11.1 DNA Preparation of Salmonella serotype Branderup strain H9812 standards (ATCC BAA-664)
3.11.2 DNA preparation of Streptococcus pneumoniae
3.11.3 Restriction Enzyme Digestion, PFGE and Analysis

4 RESULTS
4.1 General Characteristics of Study Population
4.2 Identification of Streptococcus pneumoniae Isolates
4.3 Serotype Distribution of Streptococcus pneumoniae Isolates
4.4 Susceptibility Pattern of Streptococcus pneumoniae Isolates
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>PCR Detection of Pneumolysin (ply) and Autolysin (lytA) Genes</td>
<td>67</td>
</tr>
<tr>
<td>4.6</td>
<td>PCR Detection of PspA Gene</td>
<td>71</td>
</tr>
<tr>
<td>4.7</td>
<td>PCR Detection of PspA Family Typing</td>
<td>73</td>
</tr>
<tr>
<td>4.8</td>
<td>Distribution of PspA Family Types and PspA Clades</td>
<td>77</td>
</tr>
<tr>
<td>4.9</td>
<td>PFGE Pattern of Streptococcus pneumoniae Isolates</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>DISCUSSION</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>APPENDIX B</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>APPENDIX C</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>APPENDIX D</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>APPENDIX E</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>BIODATA OF STUDENT</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>157</td>
</tr>
</tbody>
</table>