UNIVERSITI PUTRA MALAYSIA

PRODUCTION OF PHOSPHOLIPASE A2 FROM RECOMBINANT YARROWIA LIPOLYTICA FOR BIOPHARMACEUTICAL APPLICATION

NUR ‘AINUN MOKHTAR

FPSK(m) 2013 31
PRODUCTION OF PHOSPHOLIPASE A2 FROM RECOMBINANT YARROWIA LIPOLYTICA FOR BIOPHARMACEUTICAL APPLICATION

By

NUR ‘AINUN MOKHTAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2013
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

PRODUCTION OF PHOSPHOLIPASE A2 FROM RECOMBINANT YARROWIA LIPOLYTICA FOR BIOPHARMACEUTICAL APPLICATION

By

NUR ‘AINUN MOKHTAR

October 2013

Chair : Huzwah Khaza’ai, PhD
Faculty : Faculty of Medicine and Health Sciences

Phospholipase A2 (PLA2) is an enzyme that catalyzes the hydrolysis of glycerophospholipids at the sn-2 position to yield the corresponding lysophospholipids and the free fatty acids. Its catalytic properties which act as powerful emulsifier make it a widely used enzyme in various industrial application including laboratories, cosmeceuticals, food industry as well as in pharmaceutical. However, in most industries, the PLA2 used are mainly isolated from mammalian pancreas (bovine and porcine). On the contrary, it had come to an issue regarding the origin of this animal based product which are rejected due to religious concern and the risk of viral infections to the consumers. To prevail the issue, an alternative PLA2 to replace the commercially available PLA2 has been initiated. Optimization of production parameters such as temperature, initial pH, inoculum size, inducer concentration and agitation speed are investigated using Two-Level Factorial Design and Central Composite Design by
From this study, the optimal conditions PLA2 production are 6% (v/v) inoculums size; agitation speed, 225 rpm; pH 5.8; temperature of 34.5°C; inducer concentration, 0.03% (v/v) in basal salt medium. A verification run and scale up of PLA2 production yield 26.22 mg/L and 19.07 mg/L respectively compared to 27.15 mg/L predicted by the model. Purification of this enzyme through freeze drying and ultrafiltration and have shown a satisfactory purification factor of 1.15 and 1.35, respectively. The enzymatic properties (optimum activity at 37°C, pH 8.0) of the recombinant produced PLA2 from Y. lipolytica in this study shows similar properties to that of commercially available PLA2 in market which indicate that this recombinant PLA2 is a good and remarkable alternative of PLA2 sources for biopharmaceutical usage especially for HALAL applications.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGHASILAN PHOSPHOLIPASE A2 DARIPADA REKOMBINAN YARROWIA LIPOLYTICA UNTUK APLIKASI BIOFARMASEUTIKAL

Oleh

NUR ‘AINUN MOKHTAR

Oktober 2013

Pengerusi : Huzwah Khaza’ai, PhD
Fakulti : Perubatan dan Sains Kesihatan

Phospholipase A2 (PLA2) merupakan enzim yang memangkin hidrolisis gliserofosfolipid pada kedudukan sn-2 untuk menghasilkan lysophospholipid dan asid lemak bebas. Atas sifat ini, enzim ini dijadikan sebagai pengemulsi berkuasa dan sering digunakan secara meluas dalam pelbagai aplikasi industri termasuk makmal, komeseutical, industri makanan serta farmaseutikal. Walau bagaimanapun, kebiasaannya, PLA2 yang digunakan adalah berasal dari sumber pankreas mamalia (lembu dan babi). Justeru, isu mengenai asal-usul produk yang berasaskan haiwan ini kebiasaannya ditolak atas sebab tuntutan agama dan risiko jangkitan virus kepada pengguna. Bagi mengatasi isu ini, satu alternatif untuk menggantikan PLA2 komersial telah dijalankan. Pengoptimuman parameter penghasilan seperti suhu, pH awal, saiz
inokulasi, kepekatan pencetus dan kelajuan pergolakan telah dikaji menggunakan rekabentuk Dua-Aras Factoran dan Rekabentuk Komposit Tengah oleh DesignExpert®. Hasil kajian ini mendapati keadaan yang optimum bagi penghasilan PLA2 adalah 6% (v/v) saiz inokulum; kelajuan pergolakan, 225 rpm; pH 5.8; suhu, 34.5°C; kepekatan pencetus, 0.03% (v/v) dalam medium garam basal. Ujikaji pengesahan dan ujikaji skala besar mendapati hasil pengeluaran enzim PLA2 adalah masing-masing sebanyak 26.22 mg/L dan 19.07 mg/L berbanding dengan 27.15 mg/L yang diramalkan oleh model. Penyaringan melalui kaedah pengeringan beku dan ultrapenurasan pula telah menunjukkan faktor penyaringan yang memuaskan iaitu masing-masing sebanyak 1.15 dan 1.35. Ciri-ciri enzim PLA2 (aktiviti optimum pada 37°C, pH 8.0) yang dihasilkan melalui kajian ini menunjukkan ciri yang serupa dengan PLA2 boleh didapati secara komersial di pasaran. Ini menunjukkan bahawa enzim PLA2 yang dihasilkan secara rekombinan ini boleh dianggap sebagai satu alternatif yang baik bagi menggantikan PLA2 yang komersial sedia ada untuk kegunaan biofarmaceutikal terutamanya untuk aplikasi HALAL.
ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious and Merciful,

First and foremost, Alhamdulillah by His Will I am able to finish up the thesis for Master of Science in Biochemistry entitled “PRODUCTION OF PHOSPHOLIPASE A2 FROM RECOMBINANT YARROWIA LIPOLYTICA FOR BIOPHARMACEUTICAL APPLICATION”. I would like to express my deepest appreciation and many thanks to my respectful supervisor, Dr Huzwah Khaza’ai for all her knowledge, time, understanding as well as guidance and support during the completion of this study. My deep appreciation also goes to Assoc. Prof. Dr. Mohd Sokhini Abd Mutalib for intellectual discussion and scientific advice throughout this journey.

Last but never the least, to my family especially my beloved mother, Pn Hajah Wan Faridah Wan Mansor and my siblings for their timeless support and prayers, to my labmates Ibrahim, Yap, Shira and other staff friends at the Biochemistry, Cells Signaling and Pharmacology labs, for their assistance and to everyone who has helped me. Hopefully I will be able to use all the knowledge and skills that I have gained to improve myself as a future academician, InsyaAllah.
I certify that an Examination Committee has met on 10th October 2013 to conduct the final examination of Nur ‘Ainun Mokhtar on her Master of Science thesis entitled “Production of Phospholipase A2 Enzyme from Recombinant *Yarrowia lipolytica* for Biopharmaceutical Application” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Master of Science degree. Members of the Examination Chairperson Committee were as follows:

Members of the Examination Committee were as follows:

Chairman
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Examiner 1
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal examiner)

Examiner 2
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal examiner)

External Examiner
Faculty of Medicine
University of Malaya

[Signature]

Hasanah Mohd Ghazali (PhD)
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Huzwah Khaza’ai, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Chong Pei Pei, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Members)

BUJANG BIN KIMHUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NUR ‘AINUN MOKHTAR

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Background of the study</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Research objectives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.2.1 General objective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.2.2 Specific objectives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.3 Problem statement</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.4 Hypothesis</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Phospholipase A2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.1 Secreted PLA2 (sPLA2)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Cystolic PLA2 (cPLA2)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Calcium Independent PLA2 (iPLA2)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.1.4 Platelet-activating Factor Hydrolase (PAF-AH)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.1.5 Lysosomal PLA2</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.2 Industrial Application of PLA2</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Production of lysophospholipids</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Application in food industry and health food production</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Application in bread making</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.2.4 Application in degumming of vegetable oil</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.2.4 Role as potential antibacterial agent</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2.3 Yarrowia lipolytica</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.3.1 The physiology and general characteristics of Y. lipolytica</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Industrial application of Y. lipolytica</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.3.2.1 Heterologous protein expression</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>2.4 Recombinant technology for mass heterologous protein expression</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Recombinant technology for enzyme production</td>
<td>39</td>
</tr>
</tbody>
</table>
3 MATERIALS AND METHODS

3.1 Materials

3.1.1 Microorganism and media
3.1.2 Reagents for analysis and culture medium
3.1.3 Bioreactor system
3.1.4 Large scale purification
 3.1.4.1 Ultrafiltration
 3.1.4.2 Freeze Drying

3.2 Methods

3.2.1 Fermentation of Y. lipolytica
 3.2.1.1 Cell maintenance and storage
 3.2.1.2 Inoculums preparation
 3.2.1.3 Shake flask culture
 3.2.1.4 Sample collection
 3.2.1.5 Bioreactor culture
3.2.2 Optimization of fermentation conditions
 3.2.2.1 Screening of significant fermentation conditions on PLA2 production using Two-level Factorial Design (FFD)
 3.2.2.2 Optimization of significant factors on PLA2 production using Central Composite Design (CCD)
 3.2.2.3 Scale up of fermentation
3.2.3 Sample analysis
 3.2.3.1 Optical density determination
 3.2.3.2 Bradford protein assay for total protein determination
 3.2.3.3 Detection of PLA2 by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
3.2.4 Purification process
 3.2.4.1 Freeze drying
 3.2.4.2 Ultrafiltration
3.2.5 Enzymatic assay
 3.2.5.1 Standard PLA2 determination
 3.2.5.2 Enzymatic properties of recombinant PLA2

4 RESULTS AND DISCUSSION

4.1 Introduction
4.2 Optimization of PLA2 production using response surface Methodology (RSM) approach
 4.2.1 Screening of fermentation conditions
4.2.1.1 Preliminary study on fermentation parameters on PLA2 production
 a) Effect of type of media on PLA2 production
 b) Effect of temperature on PLA2 production
 c) Effect of initial pH on PLA2 production
 d) Effect of inoculum size on PLA2 production

4.2.2 Statistical approach for optimization of PLA2 production: Screening of significant factors affecting PLA2 production using Two-Level Factorial Design (FFD)
 4.2.2.1 Half-normal probability plot of effect
 4.2.2.2 Analysis of variance (ANOVA) for screening of significant factors
 4.2.2.3 Interaction among factors
 a) Interaction between inducer and initial pH
 b) Interaction between initial pH and temperature
 c) Interaction agitation speed and inoculation size
 d) Interaction between initial pH and agitation speed
 e) Interaction between initial pH and inoculation size
 f) Interaction between temperature and inoculation size

4.2.3 Statistical approach for optimization of PLA2 production: Optimization of significant factors affecting PLA2 production using Central Composite Design (CCD)
 4.2.3.1 Design of experiments
 4.2.3.2 Model selection
 4.2.3.3 Analysis of Variance (ANOVA)
 4.2.3.4 Validation of the model

4.3 Upscaling of PLA2 production from recombinant Y. lipolytica in 5L bioreactor

4.4 Purification and characterization of PLA2 enzyme from recombinant Y. lipolytica
 4.4.1 Total protein determination
 4.4.2 Detection of PLA2 by sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE)
 4.4.3 Purification and characterization of recombinant PLA2
4.4.4 Enzymatic properties of recombinant PLA2 127

5 CONCLUSION 131

6 RECOMMENDATION FOR FUTURE STUDIES 133

BIBLIOGRAPHY 135
APPENDICES 146
BIODATA OF STUDENT 153
LIST OF PUBLICATIONS 154