UNIVERSITI PUTRA MALAYSIA

NUTRITIONAL COMPOSITION, ANTIOXIDANT PROPERTIES OF Hylocereus Polyrhizus POWDER AND THEIR EFFECTS ON PLASMA GLUCOSE LEVEL AND LIPID PROFILES IN DIABETIC RATS AND PRE-DIABETIC SUBJECTS

MOHD AL-SAUFREEN BIN AKHIRUDDIN

FPSK(m) 2013 38
NUTRITIONAL COMPOSITION, ANTIOXIDANT PROPERTIES OF *Hylocereus Polyrhizus* POWDER AND THEIR EFFECTS ON PLASMA GLUCOSE LEVEL AND LIPID PROFILES IN DIABETIC RATS AND PRE-DIABETIC SUBJECTS

By

MOHD AL-SAUFREEN BIN AKHIRUDDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirements for the Degree of Master of Science

May 2013
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
This thesis is dedicated to my parents

Akhiruddin Bin Hasanbasry
Norazin Binti Ahmad

&

My lovely wife
Azimah Binti Rabu

~For their endless love, support and encouragement~
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

NUTRITIONAL COMPOSITION, ANTIOXIDANT PROPERTIES OF *Hylocereus Polyrhizus* POWDER AND THEIR EFFECTS ON PLASMA GLUCOSE LEVEL AND LIPID PROFILES IN DIABETIC RATS AND PRE-DIABETIC SUBJECTS

By

MOHD AL-SAUFREEN BIN AKHIRUDDIN

May 2013

Chairman : Associate Professor Rokiah Binti Mohd Yusof, PhD
Faculty : Medicine and Health Sciences

This study was carried out to determine nutritional composition, antioxidant properties of red pitaya (*Hylocereus polyrhizus*) powder (RPP) and to evaluate the effects of RPP consumption on blood glucose level and lipid profiles in streptozotocin-induced diabetic rats and pre-diabetic human subjects. The study consisted of three phases. In phase one, the proximate analyses of RPP were determined according to the methods of Association of Official Analytical Chemists (AOAC) international. Meanwhile, ascorbic acid assessment was carried out according to the modified method using high performance liquid chromatography (HPLC) assay. The RPP antioxidant power was determined using FRAP assay. The proximate composition of RPP were moisture (5.27 %), ash (1.22 g), carbohydrate (26.6 g), protein (1.59 g), fat (0.014 g), soluble fiber (12.05g) and insoluble fiber (5.65 g). The vitamin C content was 32.14 mg/100 g. The FRAP assay value of RPP was 31.36 ± 3.45 µM/100g or 8.72 ± 0.16 mg/100g.
In phase two, study on hypoglycemic effects of RPP on plasma glucose level and lipid profiles in diabetic induced rats was conducted. This study used forty eight male Sprague-Dawley rats weight between 250 g-300 g. All the rats were divided equally into six groups. The groups consisted of control groups (NC & DC) and treatment groups (NPP, DPP, DPPM & DM). After four weeks of treatment, all treatment groups had showed significantly reduced (p<0.05) in the plasma glucose level. The highest percentage reduction in glucose level was observed in DPPM group with 69.97 %. For plasma total cholesterol (TC) level, the highest percentage reduction was observed in NPP group with 62.39 %. In phase three, community trials were conducted among pre-diabetic human subjects at Felda Mempaga Bentong, Pahang. Total thirty six subjects were randomly divided into two groups which were pre-diabetic treatment groups consisted of PT3 (consumed 60 g RPP/day), PT4 (consumed 80 g RPP/day), and PT5 (consumed 100 g RPP/day) and pre-diabetic control groups which were not consumed RPP. For plasma glucose level, among treatment groups, PT5 had showed the highest percentage of reduction (22.90 %) with significant difference (p<0.05) in the mean plasma blood glucose level after 4 weeks of treatment. For plasma lipid profiles, showed that group PT5 had the highest percentage of reduction with significant difference (p<0.05) in TC (26.44 %), TG (20.54 %), and LDL-C (49.55%) levels followed by PT4 and PT3 groups after 4 weeks of treatment. For HDL-C level, PT5 group also showed the highest percentage of increment 63.8 %. The results revealed that all dosages of RPP drinks showed positive effects in increasing HDL-C and TAS levels, in the same time lowering glucose, TC, TG and LDL-C levels in pre-diabetic subjects.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KOMPOSISI NUTRIEN, KANDUNGAN ANTIOKSIDA SERBUK Hylocereus Polyrhizus DAN KESANANYA KE ATAS PARAS GLUKOSA PLASMA DAN PROFIL LIPID DALAM TIKUS DIABETIK DAN SUBJEK PRA-DIABETIK

Oleh

MOHD AL-SAUFREEN BIN AKHIRUDDIN

Mei 2013

Pengerusi : Professor Madya Rokiah Binti Mohd Yusof, PhD
Fakulti : Perubatan dan Sains Kesihatan

Kajian ini dijalankan untuk menentukan komposisi pemakanan, kandungan antioksidan serbuk pitaya merah (RPP) dan mengkaji kesan pengambilan RPP ke atas paras glukosa darah dan profil lipid di kalangan subjek Pra-diabetik. Terdapat tiga fasa dalam kajian ini. Dalam fasa satu, analisis komposisi nutrient RPP telah ditentukan mengikut panduan Association of Official Analytical Chemists (AOAC) international. Sementara itu, penentuan vitamin C telah dijalankan mengikut cara yang telah diubahsuai menggunakan kaedah high performance liquid chromatography (HPLC) assay. Kuasa antioksidan RPP ditentukan menggunakan kaedah FRAP. Komposisi nutrient dalam RPP adalah kelembapan (5.27 %), abu (1.22 g), karbohidrat (26.6 g), protein (1.59 g), lemak (0.014 g), fiber larut (12.05 g) dan fiber tidak larut (5.65 g). Kandungan vitamin C ialah 32.14 mg / 100 g. Nilai FRAP dalam RPP ialah 31.36 ± 3.45 µM/100 g atau 8.72 ± 0.16 mg/100 g.
Dalam fasa kedua, kajian tentang kesan hipoglisemik serbuk pitaya merah ke atas paras plasma glukosa dan profil lipid dalam tikus yang diaruh dengan streptozotocin menjadi diabetik telah dijalankan. Kajian ini menggunakan 48 tikus jantan jenis Sprague-Dawley berat diantara 250 g-300 g. Semua tikus-tikus dibahagikan secara rawak kepada enam kumpulan. Kumpulan-kumpulan ini termasuk kumpulan kawalan (NC & DC) dan rawatan (NPP, DPP, DPPM, & DM). Selepas empat minggu rawatan, Semua kumpulan rawatan telah menunjukkan penurunan ke atas paras glukosa. Peratusan pengurangan tertinggi ke atas paras glukosa telah diperhatikan dalam kumpulan DPPM sebanyak 69.97 %. Untuk plasma kolesterol (TC), peratusan pengurangan tertinggi telah diperhatikan dalam kumpulan NPP sebanyak 62.39 %. Dalam fasa ketiga, ujian komuniti telah dijalankan ke atas subjek pra-diabetik di Felda Mempaga Bentong, Pahang. Keseluruhan tiga puluh enam subjek dibahagikan secara rawak kepada dua kumpulan iaitu kumpulan pra-diabetik rawatan diwakili oleh PT3 (ambil 60 g RPP/hari), PT4 (ambil 80 g RPP/hari) dan PT5 (ambil 100 g RPP/hari) dan pra-diabetik kawalan yang tidak mengambil RPP. Bagi paras glukosa plasma, PT5 menunjukkan peratusan pengurangan tertinggi (22.90 %) selepas 4 minggu rawatan. Untuk paras profil lipid plasma, kumpulan PT5 menunjukkan peratusan pengurangan tertinggi dalam paras TC (26.44 %), TG (20.54 %), dan LDL-C (49.55 %) diikuti oleh kumpulan PT4 dan PT3. Untuk paras HDL-C, kumpulan PT5 juga menunjukkan peratusan peningkatan tertinggi iaitu sebanyak 63.8 %. Hasil kajian menunjukkan kesemua dos minuman RPP memberikan kesan positif dalam meningkatkan paras HDL-C dan TAS, dan dalam masa yang sama dapat menurunkan paras glukosa, TC, TG dan LDL-C subjek pra-diabetik.
ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim,

My utmost sincere praise and gratefulness was giving to Allah S.W.T for His grace in guiding and giving me courage and strength to complete my studies and thesis. Here, first person that I would like to express my deepest gratitude would be my dear supervisor, Assoc. Prof. Dr. Rokiah Mohd Yusof, whose sincerely giving me encouragement, times, patient, motivation and guidance during the research and writing of this thesis. Besides that, I would like to extend my thanks to Professor Dr. Asmah Rahmat as my co-supervisor for her advised.

Next, my special appreciation goes to the staffs of the Makmal Pemakanan I, Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia especially Mr. Syed Hasbullah Syed Kamaruddin (Abul) for helping me a lot to complete my laboratory works. My special acknowledgement goes to staffs of Institute of Bioproduct Development (Universiti Teknologi Malaysia, Johor) especially Mr. Sulaiman Ngadiran for their guidance and help to produce the red pitaya powder (RPP) product.

I cannot end without thanking my parents for their constant encouragement and love. It is to them that I dedicate this work and last but not least, I wish a special thanks to all my dear friends for their help and support.
I certify that a Thesis Examination Committee has met on 7 May 2013 to conduct the final examination of Mohd Al-Saufreen bin Akhiruddin on his thesis entitled "Nutritional Composition, Antioxidant Properties of *Hylocereus polyrhizus* Powder and Their Effects on Plasma Glucose Level and Lipid Profiles in Diabetic Rats and Pre-Diabetic Subjects" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Norhaizan binti Mohd Esa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Fauziah binti Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
/Internal Examiner)

Fatimah binti Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
/Internal Examiner)

Fatimah Arshad, PhD
Professor
International Medical University
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 2 August 2013

ix
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follow:

Rokiah Binti Mohd Yusof, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairperson)

Asmah Binti Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ______________________________ Date: 7 May 2013

Name and Matric No.: MOHD AL-SAUFREEN BIN AKHIRUDDIN GS23176
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 The background of the study
1.2 Statement of the problem
1.3 Significance of the study
1.4 The scope of the study
1.5 Objectives of the study
1.6 Null hypothesis

CHAPTER 2

LITERATURE REVIEW

2.1 Diabetes mellitus and hyperglycemic prediabetic
2.2 Trends of diabetes mellitus
2.3 Diabetes and its consequences
2.4 Free radical and diabetes
2.5 Health benefits of fruits and vegetables
2.6 Red pitaya (*Hylocereus polyrhizus*)
2.7 Dietary fiber and antioxidant
2.8 Effect of dietary fiber on blood glucose and lipid profiles
2.9 Mechanism of fiber on blood glucose and lipid metabolisms
2.10 Antioxidant and diabetes

CHAPTER 3

NUTRITIONAL COMPOSITION AND ANTIOXIDANT PROPERTIES OF *HYLOCEREUS POLYRHIZUS* POWDER

3.1 Introduction
3.2 Materials and methods
3.2.1 Chemicals and instrument
3.2.2 Preparation of samples
3.2.2.1 Spray drying method
3.2.3 Proximate analysis
3.2.3.1 Moisture content
3.2.3.2 Total Ash Content
3.2.3.3 Carbohydrate
3.2.3.4 Fat
3.2.3.5 Protein
3.2.3.6 Soluble and insoluble fiber
3.2.4 Mineral determination
3.2.5 Estimation of ascorbic acid (Vitamin C)
3.2.6 Antioxidant evaluation
 3.2.6.1 Determination of total phenolic content
 3.2.6.2 Ferric reducing power (FRAP) assay
 3.2.6.3 Free radical scavenging activity (DPPH)
3.2.7 Statistical analysis
3.3 Results and discussion
 3.3.1 Proximate composition of spray dried red pitaya powder
 3.3.2 Minerals content of red pitaya powder
 3.3.3 Antioxidant properties of red pitaya powder
 3.3.3.1 Ascorbic acid and total phenolic content (TPC)
 3.3.3.2 Total antioxidant activity (TAA)
 3.3.3.3 Correlation between TPC and TAA
 3.3.3.4 Correlation between TPC and radical scavenging activity
3.4 Conclusions

4 HYPOGLYCEMIC EFFECTS OF HYLOCEREUS POLYRHZUS POWDER SUPPLEMENTATION ON PLASMA GLUCOSE AND LIPID PROFILE LEVELS IN STREPTOZOTOCIN-INDUCED DIABETIC RATS
4.1 Introduction
4.2 Objectives of the study
4.3 Materials and methods
 4.3.1 Chemicals and instrument
 4.3.2 Location and sample preparation
 4.3.2.1 Location of the study
 4.3.2.2 Preparation of RPP supplement
 4.3.2.3 Preparation of metformin
 4.3.2.4 Induction of diabetic rat
 4.3.3 Experimental design
 4.3.4 Blood collection and biochemical parameters
 4.3.5 Statistical analysis
4.4 Results and discussion
 4.4.1 Changes in mean plasma glucose level
 4.4.2 Changes in mean plasma total cholesterol level
 4.4.3 Changes in mean plasma triglyceride level
 4.4.4 Changes in mean plasma HDL-C level
4.4.5 Changes in mean plasma LDL-C level

4.5 Conclusions

5 HYPOGLYCEMIC EFFECTS OF HYLOCEREUS POLYRHIZUS POWDER SUPPLEMENTATION ON BLOOD GLUCOSE LEVEL IN PRE-DIABETIC SUBJECTS

5.1 Introduction

5.2 Materials and methods

5.2.1 Chemicals and materials

5.2.2 Development of red pitaya product

5.2.2.1 Calculation for consumption of minimum and maximum dosage

5.2.3 Recruitment of subjects

5.2.4 Study design and diet

5.2.5 Socio-demographic questionnaires

5.2.6 3 days, 24 hours dietary food record

5.2.7 Blood collection and blood plasma preparation

5.2.8 Blood pressure and anthropometric measurement

5.2.9 Measurement of biochemical parameters

5.2.9.1 Principal of glucose determination

5.2.9.2 Principal of triglyceride determination

5.2.9.3 Principal of total cholesterol determination

5.2.9.4 Principal of blood HDL-C determination

5.2.10 Statistical analysis

5.3 Results and discussions

5.3.1 Socio-demographic data of the subjects

5.3.2 Anthropometric measurements of the subjects

5.3.3 Nutrient intake (3 days 24 hour diet record)

5.3.4 Changes in mean body weight

5.3.5 Changes in mean systolic and diastolic blood pressure

5.3.6 Biochemical analysis

5.3.6.1 Effects on plasma glucose

5.3.6.2 Effects on plasma total cholesterol

5.3.6.3 Effects on triglyceride

5.3.6.4 Effects on HDL-C

5.3.6.5 Effects on LDL-C

5.3.6.6 Effects on total antioxidant status

5.4 Discussion

5.4.1 Body weight and blood pressure

5.4.2 Plasma glucose level

xv
5.4.3 Plasma lipid level 141
5.4.4 Total antioxidant status 145
5.5 Conclusions 146

6 SUMMARY, GENERAL CONCLUSION, LIMITATION OF STUDY AND RECOMMENDATION FOR FUTURE RESEARCH 147
6.1 Summary 147
6.2 General conclusion 154
6.3 Limitation of study 155
6.4 Recommendation for future research 155

REFERENCES 157
APPENDICES 177
BIODATA OF STUDENT 193