CHARACTERIZATION OF DEFECTS IN UNIDIRECTIONAL KENAF FIBER-
REINFORCED POLYURETHANE COMPOSITES USING INFRARED
THERMOGRAPHY TECHNIQUE

ZAHRA DASHTIZADEH

FK 2012 73
CHARACTERIZATION OF DEFECTS IN UNIDIRECTIONAL KENAF FIBER-REINFORCED POLYURETHANE COMPOSITES USING INFRARED THERMOGRAPHY TECHNIQUE

By

ZAHRA DASHTIZADEH

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

May 2012
DEDICATION

This work is dedicated to:

My parents,
Your encouragement and comforting words is a tonic for my soul.

My husband,
Your dynamic and generous spirit continues to enrich my life.

My parents’ in-laws,
Your supportive friendship and encouragement is the peace of my life.

My brothers,
Your friendship is a treasure beyond comparison.
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

CHARACTERIZATION OF DEFECTS IN UNIDIRECTIONAL KENAF FIBER-REINFORCED POLYURETHANE COMPOSITES USING INFRARED THERMOGRAPHY TECHNIQUE

By

ZAHRA DASHTIZADEH

May 2012

Chairman : Professor Aidy Ali, PhD
Faculty : Engineering

Quality control is always an important issue in industrial production. According to economics, it is more convenient to check the structural integrity and the quality of a product before it gets damaged in site. Kenaf/Polyurethane (PU) composites have potential application as “insulators” in buildings since the current insulators, such as the asbestos are dangerous for human health and can cause lung cancer. The purpose of this study was to determine the capabilities of infrared thermography in detecting and characterizing the defects in kenaf/PU composites.

Kenaf/PU composites having three different weight contents (40/60, 50/50 and 60/40 Kenaf / PU weight %) were manufactured, then cut into three different thicknesses (9mm, 6mm and 4mm) to study the effect of thickness on the infrared images. Active thermography method was applied and the thermal images were captured for investigating the defects. The scanning electron microscopy (SEM) was used to provide a micrograph as an evidence for the thermography results.
The results show that the 6mm thickness in all cases has more defects in terms of area as compared to the 4mm and 9mm thickness. Moreover, the SEM micrographs have confirmed that the defective areas have defects such as voids, fiber pulled out, fiber break out that are the results of weak interfacial adhesion between kenaf and PU. In addition, the results also determine that voids and PU-rich zone are the defects that can be easily captured while the delamination and crack are the defects that are hard to be captured. Also, thermal images indicate that the amount of fiber plays an important role in the thermal images, since the thermal image of a 60% kenaf board is different from a thermal image of a 50% or 40% kenaf boards. Therefore, SEM morphology as evidence has proven that thermography is able to detect the surface and subsurface defects like voids and PU-rich zones.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENCIRIAN KECAKATAN DALAM KOMPOSIT POLIURETENA DIPERKUAT GENTIAN KENAF SATU ARAH MENGGUNAKAN TEKNIK TERMOGRAFI INFRAMERAH

Oleh

ZAHRA DASHTIZADEH

Mei 2012

Pengerusi : Profesor Aidy Ali, PhD
Fakulti : Kejuruteraan

Kawalan kualiti merupakan isu yang penting dalam industri pengeluaran dan menurut ekonomi, adalah lebih mudah untuk memeriksa integriti struktur dan kualiti sesuatu produk sebelum ia mengalami kerosakan di tapak. Komposit kenaf/poliuretana (PU) mempunyai potensi untuk diaplikasikan sebagai “penebat” dalam bangunan di mana penebat yang digunakan sekarang iaitu asbestos berbahaya kepada kesihatan manusia dan boleh menjadi penyebab kepada barah paru-paru. Tujuan kajian ini adalah untuk menentukan keupayaan termografi inframerah dalam mengesan dan mencirikan kecacatan pada komposit kenaf/PU.

Komposit kenaf/PU ang mempunyai tiga kandungan berat yang berbeza (40/60, 50/50 dan 60/40 Kenaf / PU berat%) telah dihasilkan dan kemudian dipotong kepada tiga ketebalan yang berbeza (9 mm, 6 mm dan 4 mm) untuk mencirikan kesan ketebalan dalam keputusan imej inframerah. Kaedah termografi aktif telah digunakan, kemudian imej terma ditangkap untuk mengkaji kecacatan, dan mikroskop pengimbas electron
(SEM) digunakan untuk menyediakan mikrograf sebagai bukti untuk keputusan termografi.

Keputusan menunjukkan pada ketebalan 6 mm untuk setiap kes mempunyai kecacatan yang lebih tinggi berbanding ketebalan 4 mm dan 9 mm. Tambahan pula, mikrograf SEM telah meluluskan bahawa kawasan cacat yang mempunyai kecacatan seperti lompang, penarikan keluar gentian dan pematahan gentian adalah keputusan daya rekatan antara muka yang lemah antara kenaf dan PU. Di samping itu, keputusan kajian ini juga menentukan bahawa lompang dan kawasan diperkaya PU adalah kecacatan yang boleh ditangkap dengan mudah manakala penyahikatan antara gentian dan matrik dan keretakan adalah kecacatan yang sulit untuk ditangkap. Imej terma juga menunjukkan bahawa jumlah serat memainkan peranan penting dalam imej terma, di mana imej terma untuk 60% papan kenaf adalah berbeza dengan imej terma untuk 50% atau 40% papan kenaf. Oleh itu, SEM telah membuktikan bahawa termografi dapat mengesan kecacatan permukaan dan subpermukaan seperti lompang dan kawasan yang diperkaya PU.
ACKNOWLEDGEMENTS

Thank God for His help while I was about to give up and His unbelievably close support any time I needed.

I owe my deepest gratitude and thanks to my supervisor, Professor Dr. Aidy Ali, who has supported me to complete my thesis with his patience and knowledge. I attribute the level of my Masters degree to his encouragement and effort and without him this thesis, too, would not have been completed or written.

I also would like to appreciate the efforts of the honorable Associate Professor Dr. Khalina Abdan for providing me with fruitful information and giving me a vast visibility in the world of knowledge. I also thank all other faculty members who somehow helped me to prepare this thesis. Last but not least, I would like to express my gratitude to my beloved parents, with their guidance, supports, love and encouragement.
This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Aidy Bin Ali, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Khalina Abdan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date
DECLARATION

I declare that the thesis is my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at University Putra Malaysia or other institutions.

ZAHRA DASHTIZADEH
Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction
1.2 Research problem
1.3 Objective of the study
1.4 Scope of the study
1.5 Lay out of the thesis

2 LITERATURE REVIEW

2.1 Introduction
2.2 Determination of defects in composite boards using NDT techniques
2.3 Ultrasonic method versus Infrared thermography
2.4 Infrared thermography
 2.4.1 Thermography fundamentals
2.5 Applications of infrared thermography
2.6 Biocomposites
2.7 Mechanical properties of various natural fibers
2.8 Applications of natural fibers in composite materials
2.9 Properties of kenaf fiber reinforced polymer
 2.9.1 Comparison of kenaf composite boards with other insulator materials
2.10 Summary

3 METHODOLOGY

3.1 Introduction
3.2 Preparation of materials
 3.2.1 Preparation of kenaf fibers
 3.2.2 Preparation of mould
3.3 Preparation of kenaf composite boards
3.4 Defect characterization
 3.4.1 Preparation of specimens
 3.4.2 Experimental methods
3.5 Morphology study
 3.5.1 The healthy part 47
 3.5.2 The defective parts 48
3.6 Summary 51

4 RESULTS AND DISCUSSION 53
 4.1 Introduction 53
 4.2 Thickness effect characterization 53
 4.3 Possible defective areas 54
 4.4 Morphology results
 4.4.1 Morphology results for 40%kenaf & 4mm thickness 62
 4.4.2 Morphology results for 40%kenaf & 6mm thickness 68
 4.4.3 Morphology results for 40%kenaf & 9mm thickness 71
 4.4.4 Morphology results for 50%kenaf & 4mm thickness 74
 4.4.5 Morphology results for 50%kenaf & 6mm thickness 77
 4.4.6 Morphology results for 50%kenaf & 9mm thickness 80
 4.4.7 Morphology results for 60%kenaf & 4mm thickness 83
 4.4.8 Morphology results for 60%kenaf & 6mm thickness 86
 4.4.9 Morphology results for 60%kenaf & 9mm thickness 89
 4.5 Location of defects 91
 4.6 Summary of results 92

5 CONCLUSIONS AND RECOMMENDATIONS 97
 5.1 Conclusions 97
 5.2 Recommendations for further works 99

REFERENCES 100
BIODATA OF STUDENT 106
LIST OF PUBLICATIONS 107