FINITE ELEMENT METHOD PREDICTION OF HIP PROSTHESIS IN BONE RESORPTION ENVIRONMENT

SOLEHUDDIN BIN SHUIB

FK 2012 60
FINITE ELEMENT METHOD PREDICTION OF HIP PROSTHESIS IN BONE RESORPTION ENVIRONMENT

By
SOLEHUDDIN BIN SHUIB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

MAY 2012
© Copyright 2012 by Solehuddin bin Shuib
All Rights Reserved
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

FINITE ELEMENT METHOD PREDICTION OF HIP PROSTHESIS IN BONE RESORPTION ENVIRONMENT

By

SOLEHUDDIN BIN SHUIB

May 2012

Chairman: Professor Ir. Barkawi bin Sahari, PhD

Faculty: Engineering

Total hip replacement (THR) is normally done for the failure of hip joint caused by osteoarthritis. It is performed to relief pain and to improve functionality. Issues related to the study include method to reduce fixation failure, means to improve the longevity of the prosthesis, methods to reduce the factors contributing to probability of failure such as cement strength, implant interface strength, and loosening. The present work focused on failure related to stress related only. The main aim of this work is to study the inner failure stress for THR and to suggest recommended functional activities for patient whom undergoes THR. By knowing the stress for the inner bone, the failure mechanisms of THR for different dynamics loadings can be predicted more objectively. For this study, ANSYS Workbench version 11.0 was used for the Finite Element (FE) analysis. The values of stress and strain distributions in anterior (A), posterior (P), medial (M) and lateral (L) positions of the healthy femoral bone and THR were obtained. The stress and strain distributions of inner healthy femoral bone surface subjected to standing were studied. The effect of materials on the variations of stress and strain of the outer and inner surface of the
healthy bone were studied and determined. Hip prosthesis and hip prosthesis with bone resorption for different functional activities such as standing, walking, stair-climbing, single-legged stance, abductor, and adductor loads was studied. Failure mechanisms of hip implant were determined and THR life was predicted. The values of von Mises stresses and strains for inner surface of the femur and consideration of bone resorption are essential for the study of Total Hip Replacement (THR). The restricted types of activities for the patient who undergoes THR surgery were recommended. From this study it was found that the THR the patient should not do activities such as stair climbing and adduction. The data for inner stress can be used as a guide for future implant design and surgical procedure.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

RAMALAN ALAT GANTI TULANG PEHA DALAM PERSEKITARAN PENGECHATAN TULANG MENGGUNAKAN KAEDAH UNSUR TAK TERHILANG

Oleh

SOLEHUDDIN BIN SHUIB

Mei 2012

Pengerusi: Profesor Ir. Barkawi bin Sahari, PhD

Fakulti: Kejuruteraan

ACKNOWLEDGEMENTS

First and foremost, my deepest appreciation and thanks must be expressed to my academic advisor, Prof. Ir. Dr. Barkawi bin Sahari. He has been an inspiration, my primary motivator, guidance, support and encouragement throughout my study at UPM.

I would like to thank also my co-supervisors Professor Dr. Wong Shaw Voon, and Associate Professor Dr. Manohar for their useful input and wisdom.

Special thanks to Dr. A Halim Kadarman, USM and Mr. Timothy Kwan, CAD-IT consultant for their assistance in FORTRAN programming and ANSYS troubleshooting. Their assistance is invaluable. I have learned valuable lesson from them.

I wish to thank ITMA for providing lab facilities for this research. The atmosphere at ITMA automotive lab is very conducive for producing exceptional work in the advancement of numerical study in biomechanics. Thank also for Mr. Nazrul for his technical support in the lab.

I would like to dedicate this work to my mum, Hajjah Azizah bt Abd Hamid. The amount of love and support and du’a she has provided me over the entire life allowed me to progress and complete this thesis.

Lastly, I would like to thank my wife Dr. Siti Mariam, and my children Salman, Suhaib, Said Bilal and Siti Khadijah for their understanding and encouragement.
I certify that a Thesis Examination Committee has met on 22 May, 2012 to conduct the final examination of Mr. Solehuddin bin Shuib on his thesis entitled "Finite Element Method Prediction of Hip Prosthesis in Bone Resorption Environment" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Shamsuddin bin Sulaiman, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd. Khairel Anuar bin Mohd Ariffin, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Faizal bin Mustapha, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Shaker A. Meguid, PhD
Nanyang Technological University
Singapore
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 July 2012
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee are as follows:

Professor Barkawi bin Sahari, PhD, Ir
Faculty of Engineering,
Universiti Putra Malaysia
(Chairman)

Professor Wong Shaw Voon, PhD
Faculty of Engineering, Universiti Putra Malaysia
(Member)

Associate Professor Dr. Manohar A/L Arumugam, M.S. Ortho
Faculty of Medicine and Health Sciences,
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
PROFESSOR AND DEAN
SCHOOL OF GRADUATE STUDIES
UNIVERSITI PUTRA MALAYSIA

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

SOLEHUDDIN BIN SHUIB

Date: 22 May 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>v</td>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>vii</td>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>viii</td>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>x</td>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>xi</td>
<td>TABLE OF CONTENTS</td>
<td>xi</td>
</tr>
<tr>
<td>xiv</td>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>xvii</td>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>xxvii</td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 - 1.1 Background 1
 - 1.2 Problems definitions 1
 - 1.3 Knowledge gap in the field of present research 2
 - 1.4 Project objectives 2
 - 1.5 Thesis structure 3

2. **LITERATURE REVIEW**
 - 2.1 Introduction 4
 - 2.2 Human skeletal system- Bony framework of the body 4
 - 2.2.1 Bone morphology 5
 - 2.2.2 Femoral bone anatomy 7
 - 2.3 Finite element modeling 8
 - 2.3.1 General procedures and discretization by finite elements 9
 - 2.3.2 Modeling of femoral bone 12
 - 2.3.3 Hip prosthesis modeling consideration 17
 - 2.3.4 Tissue growth, remodeling and degeneration of bone 25
 - 2.4 Failure analysis and life prediction 33
 - 2.4.1 Material criterion 36