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ABSTRAK

Pelbagai proses kimia dan biologi boleh dirangkapkan dalam bentuk fungsi tak
linear yang mengandungi beberapa eksponen. Satu kaedah yang cekap tetapi
kurang digunakan untuk menentukan parameter-parameter di dalam fungsi
tersebut ialah dengan memadankan data kepada suatu model. Kertas kerja ini
menghuraikan penggunaan subrutin NAG, E04HFF dan LSFUN2 bagi analisis
data yang disimulasi dan mengandungi dua eksponen. Data itu juga mengandungi
selisih bebas bertabur normal. Bagi sisihan dengan selisih piawai kurang daripada
0.3, kaedah ini menyakinkan dan cekap. Pekali-pekali linear dan pemalar masa
yang pendek boleh ditentukan dengan kejituan melebihi 98%. Apabila sisihan
piawai melebihi 2.0, selisih-selisih di dalam parameter boleh melebihi 12%.

ABSTRACT

A wide variety of chemical and biophysical processes are describable in a non­
linear function consisting of a number of exponentials. An efficient but seldom­
used method to estimate the parameters is by fitting the data to a model. This
paper describes the use of NAG subroutines E04HFF and LSFUN2 for the non­
linear analysis of simulated data which conform to a model consisting of two
exponentials. The data have been generated with independent and normally
distributed errors. For errors with standard deviation less than 0.3, the method
proves to be reliable and efficient. The linear coefficient and the shorter time
constant have been obtained with an accuracy better than 98%. However, when
the standard deviation of the error is greater than 2.0, the error in the estimat­
ed parameters can be as large as 12%.
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INTRODUCTION

Some experimen ts in physical and biophysical sciences yield data which can
be expressed as a sum of exponentials. Fitting the data to a model enables
the identification of the system or the determination of the parameters of
the model. In a biological system, one may use a mathematical model to
describe the concentrations and amount of a substance as a function of time.
In medicine and physiology, compartmental analysis is often used to study
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the turnover ofradioactive substrates (Goodman and Noble 1969; Phang et al.
1969) A typical mathematical model which generally conforms to problems
cited above takes the form of

S(t) = LM e- Al, (j = 1,2 .... P),
J

(1)

where S(t) is the data taken at time t ; M j and Aj are the parameters to be
determined, and P is the number of terms corresponding to the number of
compartmen ts.

If the model consists of two exponen tials, then equation (l) takes the
form of

S(t) = M
1

e- Al t, + M
2

e- A2 t (2)

The common procedure for determining parameters Ml' M2, A, and A2 is to
plot I" S(t) against time t. The values ofM2 and A2 are determined (Jacquez
1972), respectively, from the intercept and from the linear slope of the last
part of the curve at very long time t. Extrapolating M2 e- A2

t and subtracting
it from S( t) at all points gives a new function S' (t). If the latter is plotted
again as above, a second pair of M, and A,] is obtained. Thus at the first
step, the method assumes that A2 is sufficiently smaller than AI for the term
M~ e- A,21 to dominate the decay curve as t ~ O. The method also assumes
th;t the data is error free. However, the process of linearization may pro­
duce inconsistent variance (Bevington 1969; Leipert and Marquart 1976),
and thus the most accurately determined coefficients are those obtained in
the first step.

This paper illustrates the reliability and the ease of using a computer program
to estimate the parameters in functions containing one or two exponentials.
Originally the program was prepared to determine the NMR relaxation
times from either inversion recovery (IR) or the Carr-Purcell-Meiboom-Gill
(CPMG) experiments. The method uses the modified Gauss-Newton
algorithm. The advantages over the graphical techniques are (a) that the
data need not be error free, (b) that there exists a statistical basis for accepting
or rejecting the model and (c) that all parameters are determined simulta­
neously and are therefore subject to equal error.

The Modified Gauss-Newton Algorithm

If the data contain errors, equation (2) has to be modified as
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Provided the errors in the data are small, the most reliable method of fitting
the data involves minimization of a sum of squares (Atkins 1969), given by

II

E = L. [y,(t) - S/t, Ij)P
i=l

(4)

P
j
represents A's and M's, and Y; (t) is the data at this point. In vector form,

equation 4, takes the form of

II

E (1')= L.J/ (1')
i=1

(5)

where !J = [Yi - slJ5)] and l' denotes the vector values of Pj . At ea~h poin t
i, the modified Gauss-Newton algorithm linearizes the function S/P) about
the current value l' by means of a first-order Taylor series expansion.

ds
S (fi + 6 fi)= S (fi) + -. (6 fi) (6)

dp
ds

Here -.is the Jacobian J of n x] matrix of partial derivatives S with respect
dp

to all parameters. Equation (4) then becomes

II

E (fi + 6 fi)= L.f/ (fi + 6 fi)
i=l

(7)

(8)

Minimizing E in 7 with respect to all P 'swill produce the gradient vector,

11 at
-2 It}; (fi) -' (fi)

i~l aJ;

11 _ at _
g (fi) = -2 L.}; (p) -(p)

i=l a;;
11 at

-2 L.}; (fi) -'(fi)
i=l aJ;

=_2JT (fi) f (fi)

The approximation of the gradient at the point
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(9)

(Scale 1985). HereIf (f) j(f) is the first term of the Hessian matrix E. The
solution to (9) is obtained when E is minimum. This requires g (f+ 6 f) to
be zero, giving

(10)

EXPERIMENTAL METHOD

A computer program, FORTRAN 77, was written utilizing the national algo­
rithm group (NAG) subroutines E04HFF and LSFUN2. Computation was
carried out on the main frame computer, Honey Well 66 at the University of
Aberdeen.

Using equation (3), sets of data were generated with M[ = 50.0, M2 = 35.0,

Ts = -1 = 85.0, Tt = -1 = 263.0 and E = 0
AI 11.2

Except the first, all sets contain errors with mean zero and standard devia­
tion 0.2. The errors were the random numbers generated by AG subroutine
G05DDF. Results are shown in Table 1. The number of points n was 27.

In order to determine the effect of increasing errors on the accuracy and
on the reliability of the fitting procedure, errors with increasing standard
deviation were added to the generated data. Results are shown in Table 2.
Experiments similar to those described above are being performed using a
personal computer PC 386SX. Early results are encouraging, and will be
reported subsequently.

RESULTS

Table 1 illustrates the results of the analysis of 12 sets of data. The constant
which was set to zero in the data generation appears to fluctuate between
1.46 to -4.83 about the mean value of -0.39. The short time constant Ts is
recovered with small variaton from data to data. The long time constant T],
however, is found to vary within a larger range of values. Its mean and stan­
dard deviation are 276.2, and ± 74.9 ms respectively. The linear coefficients
M1 and M2 are recovered with errors less than 2%. If the data contain no
errors as indicated in the first row of the table, all parameters are perfectly
recovered. This proves conclusively that the computation is correct and that
the errors in the parameters are solely due to the errors in the data.
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Table 2 shows the results on the effect of increasing the error. For
standard deviation below 0.5, the coefficients M], M2 and the short time constant
Ts are recovered satisfactorily. The long time constant T tends to decrease
from 273.9 ± 11.8 ms to 249.5 ± 65.7 ms.

The accuracy and the correctness of fit gets worse as the error increases
above 1.0. Above these values, the estimated parameters can be in error by
as much as 10%.

TABLE 1
Generated data with M1 = 50.0, M2 = 35.0, Ts = 85, T1 = 263 and £ = 0

with errors of zero mean and standard deviation 0.2

Data £ M1 M2 Ts T1 E

Error Free 0.00 50.0 35.0 85.0 263.0 0.000

1 -0.37 52.4 32.5 88.4 282.4 0.192

2 -0.43 52.6 32.7 86.4 285.8 0.183

3 -4.83 62.2 27.4 95.8 487.4 0.186

4 0.83 52.8 37.5 86.9 236.2 0.175

5 0.51 49.4 36.4 85.6 228.8 0.166

6 1.46 44.4 41.4 76.9 201.2 0.172

7 0.94 48.4 35.5 85.2 241.1 0.218

8 -1.08 54.7 31.3 88.9 309.2 0.222

9 0.35 46.7 38.8 79.4 244.3 0.175

10 -1.11 54.4 31.4 89.3 310.7 0.150

11 -0.10 49.1 36.3 82.8 263.6 0.225

12 -0.81 42.5 41.2 76.9 223.2 0.177

mean -0.39 50.8 35.2 85.2 276.2 0.188

± std. ±1.63 ±5.3 ±4.2 ±5.5 ±74.9

This study demonstrates that the only reliable parameters are the linear
coefficients MI' M2 and the short time constant, provided the errors in the
data are small. Computation is thus sensitive to errors. From this finding, it
is concluded that great care must be taken in the design of an experiment
and in the collection of data.

The correctness of fit is indicated by the fitting error E. The smaller the
value of E, the better will be the fit. This is expected to occur. The tolerance
of the analysis with the starting point was also tested by varying the initial values
of Mp M2, Ts and Tt . It is observed that the analysis was not affected as long
as the starting point is between 30% - 70% of the parameter real values.
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TABLE 2
Effect of increasing the standard deviation of the error

on the estimated parameters

Std £ M1 M 2 Ts T 1 E

Data 1 0.3 0.24 ± 50.9 ± 34.2 ± 86.6 ± 273.9 ± 0.323

0.47 6.5 7.7 8.6 11.8

Data 2 0.5 0.97 ± 50.9 ± 34.2 ± 85.1 ± 252.9 ± 0.942

0.66 0.6 0.5 0.8 12.9

Data 3 1.0 1.14 ± 51.0 ± 34.0 ± 85.9 ± 250.0 ± 1.077

1.08 1.6 6.5 6.1 70.8

Data 4 2.0 2.11 ± 54.4 ± 30.8± 87.6± 249.5 ± 2.156

1.80 8.7 5.9 7.6 65.7

CONCLUSIONS
This study examined the reliability and ease of using the modified Gauss­
Newton method to analyse simulated data containing independent and nor­
mally distributed errors. Satisfactory results, particularly thos~ of the linear
coefficients and the short time constant, have been obtaine.dr-as long as the
errors are small. Such analysis might be categorised as the small residual
problem (Jennrich and Ralston 1979). The observation also shows that there
is no apparent correlation between the accuracy and the fitting error. This is
very clear for T l . From this observation, it can be concluded that a good fit
does not necessarily mean high accuracy in all the estimated parameters.

The ability to resolve the function into its components also depends on
the ratio Tt/Ts' According to Atkins (1969), two exponential terms might
not be separable if the ratio between the time constants is less than 2. Since
the function is non-linear, the accuracy may be affected by the time span of
the experiment. Further study is required to examine those factors.
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