ISSN: 0128-7680
Pertanika J. Sci. & Technol. 3(1):1-18(1995) © Universiti Pertanian Malaysia Press

Software Design Criteria for Maintainability

Aziz Deraman and P. J. Layzell'
Computer Science Department
Faculty of Mathematics and Compuler Science
Universiti Kebangsaan Malaysia,
43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia

Information System Group
Computation Department
UMIST
P.O. Box 88, Manchester, M60 10D, England

Received 20 August 1992

ABSTRAK

Satu daripada isu yang sedang diperkatakan dalam bidang kejuruteraan perisian
adalah berkait dengan masalah penyenggaraan perisian. Telah menjadi hakikat
bahawa masalah yang timbul disebabkan oleh rekabentuk perisian yang tidak baik
dan amalan penyenggaraan yang tidak betul Isu rekabentuk perisian yang tidak
baik merupakan tujahan kertas ini. Kita menghujahkan bahawa kebanyakan
metadologi rekabentuk perisian sekarang tidak dibina berasaskan kriteria untuk
menjadikan kerja penyenggaraan di kemudian hari lebih mudah. Oleh yang
demikian, dengan adanya satu set kriteria rekabentuk untuk kebolehsenggaraan,
perisian yang dihasilkan dipercayai akan lebih mudah disenggara. Dalam kertas
ini kita akan mengenal pasti kriteria berkenaan dan diikuti dengan penilaian ter-
hadap beberapa metodologi rekabentuk perisian.

ABSTRACT

One of the current issues in the software engineering community is related to
problems of software maintenance. It is a common belief that these problems
are caused by bad software design and poor maintenance practices. The first of
these is the concern of this paper. We argue that the existing software design
methodologies are not properly developed based on criteria for easy software
maintenance at later stages. Therefore, with a set of software design criteria for
maintainability, software is believed to be more maintainable. In this paper we
shall identify those criteria followed by assessment of several software design
methodologies.

Keywords: software design, maintainability, methodology, modelling, prototy-
ping, explicitness, software engineering

INTRODUCTION

One of the current issues in the software engineering community is the problem
of software maintenance. Even though it has long been recognized (Swanson

Aziz Deraman and P. J. Layzell

1976), the problems are becoming worse (Zvegintzov 1983; Weiner 1984;
Harrison 1987; Linehan 1988). It is a common belief that these problems
occur because of bad software design and poor maintenance practices. The
first is the concern of this paper.

A vast number of methodologies are being used in software development
environment. These methodologies are different in various ways such as the
emphasis on the approaches taken to solve a certain problem, the use of
design languages, supporting tools and so on. To stem an outbreak of soft-
ware maintenance problems, methodology producers are trying to update
their methodologies so that the software produced are more maintainable.
A maintainable software product is one that is understandable, testable and
easy to modify. Maintainability can be derived from several maintenance
metrics such as consistency, modularity, simplicity, conciseness and self-
descriptives (Gilb 1977; Boehm 1978; Perlis 1981; Arthur 1985). However,
this strategy has yet to be proven successful since the software maintenance
processes are still costly.

Having analysed software maintenance metrics (Perlis et al. 1981; Athur
1985), we have come to the conclusion that they can be applied to the soft-
ware development methodology to produce more maintainable software.
Therefore, this paper begins with a brief historical perspective of software
development methodology. We then propose several design criteria for
maintainability followed by assessments of several contemporary methodologies.
Finally we conclude with discussion of future trends based on the proposed
criteria for maintainability.

HISTORICAL PERSPECTIVE

In the 1970s, research to improve software development methodology was
conducted and the so-called ‘structured methods’ emerged. During this peri-
od most of the proposed methods were based on functional decomposition;
these were later followed by methods based on data structure and data flow.
Functional decomposition, one of the earliest structured methodologies, was
based on functional analysis. Among the successful methodologies using this
approach were HIPO (Stay 1976) and SADT (Ross 1977; Dickover 1978).
However, as software became larger and more complex and software main-
tenance gained popularity, these methods were no longer reliable. Then
came the idea of software development based on data. It was claimed that,
data-oriented designs were more stable and good for maintenance purposes.
Among popular methodologies using data-oriented approaches are JSP
(Jackson 1975) and Warnierr-Orr methodology (Orr 1977). Methodologies
using data flow are structured design (Stevens 1974) and similar methods by
Meyers (1975), DeMarco (1978) and Yourdon and Constantine (1979).

As software maintenance problems became more apparent, efforts to
improve the existing methodologies continued into the early 1980s. During

9 Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995

Software Design Criteria for Maintainability

this period, data-based modelling, especially the E-R approach (Chen 1976)
and functional analysis modelling, were used together to get a good system
model (Yourdon 1984). Recent methodologies are more comprehensive
and integrated (i.e. cover almost all aspects of the software development life-
cycle) and are generally accompanied by several development tools. Such
methodologies are information engineering (Macdonald 1986), NIAM
(Verheijen 1982), SSADM (Downs et al. 1988; Longworth 1989), JSD
(Jackson 1983) and RUBRIC (Layzell and Loucopaulos 1988).

However, chaos in software maintenance is still far from over.
Contemporary methodologies with powerful graphical tools and some with
good formal practices such as VDM (Hekmatpour and Ince 1988) do not
seem to have overcome the maintenance problems. There are also some sug-
gestions on revised methodologies with emphasis on maintenance, but many
of these ideas are based purely on a mixture of the old methods and man-
agement practices (see e.g., Brice and Cornell 1983; Connell and Brice
1984; Tinnirello 1984; Longworth 1985). We believe that the emphasis on
subjective areas such as management contributes little towards maintenance
since it can be easily ignored in a real world environment. On the other
hand, a major factor that should be considered now is the actual contents of
the design itself and how they are represented.

DESIGN CRITERIA FOR MAINTAINABILITY

There are two types of criteria that can contribute towards producing main-
tainable software. The first, or primary criteria, will determine the ease of
maintenance during a software’s life-time, especially adaptive maintenance.
The second, or secondary criteria, is the one that will ultimately determine
the quality of the software produced, which will help to meet user require-
ments. These criteria will therefore reduce problems especially for corrective
and perfective maintenance.
Among primary maintainability criteria in software development
methodology are:
e Real world modelling;
¢ Independence of specification modelling (which includes the following
models: process, entity, event, constraint, task and human-computer
interface);
e Explicitness;
e Modularity.

The secondary criteria are:
e Data dictionary;
e Uniformity;
e Prototyping;
e User involvement;

Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995 3

Aziz Deraman and P. J. Layzell

e Documentation;
e Computer-aided tools.

The above criteria are expected to contribute towards software maintenance

generally in the following areas:

0 Reducing effort for software understanding by high-quality design deli-
verables;

0 Reducing corrective maintenance effort by meeting all user require-
ments;

0 Producing software to accept changes by anticipating future require-
ments early in the design;

0 Making maintenance tasks simpler by the adoption of simple and mecha-
nizable techniques during software development.

The following are detailed descriptions of the above criteria:

Real World Modelling

The need for users to anticipate current and future requirements during
software development is crucial. To achieve this, a methodology should first
provide a way to construct a real world model of an application. With the
model, users are expected to understand more formally and thoroughly
about their world, and therefore can further anticipate their future require-
ments. With this understanding, users can perhaps express their require-
ments more accurately and therefore help reduce maintenance effort. With
less effort needed to specify users’ requirements, the analyst can spend more
of his time working on flexible design so that adaptive maintenance can be
done easily as users view their future world.

Independence of Specification Modelling

The specification phase in software development is very important since it
helps to bridge the real world (user perception) and the system world (analyst
perception). This phase will specify the user’s requirements as perceived by
the analyst. Since the product of this phase becomes a critical resource during
development and maintenance, it is very important to model various specifi-
cation elements explicitly. As mentioned earlier, there are six elements that
should be modelled separately to ensure greater maintainability of software.

i) Process models: This model describes and represents processes involved
in the system. The model will show the interrelationship between
processes used to convert input into output. To a certain extent, the
model will also show the detailed action of each process.

ii) Entity models: Entity modelling is concerned with the description of
data behaviour. Every distinct object in the enterprise will be identified

4 Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995

Software Design Criteria for Maintainability

together with all their relationships (each relationship can also be
regarded as an entity). These entities and relationships will then be used
to construct an entity model(which represents data). To further refine
the entity model, attributes for each entity type can be identified and
more detailed entity models can be produced.

iii) Event models: Event modelling is concerned with the happenings in an
enterprise which will change the state of data in the enterprise.
Occurrences of the events eventually trigger a certain process or action
in the system .

iv) Constraint models: Constraint modelling is concerned with rules or con-
straints that are applied to an entity throughout its life-time in a system.
These rules therefore determine the behaviour of the entity that is diffi-
cult to represent in the entity model.

v) Task models: This model describes the sequence of user interactions
with the system. The model will show the logical order of processes from
the user’s perspective.

vi) Human-computer interface (HCI) models: HCI modelling is concerned
with the way users will interact with the system. It provides details about
how each task will be performed by the user.

Explicitness

Every decision (or assumption) made during software development processes
should be formally stated and explicitly recorded. This explicitness criterion
is very important for development and subsequently for maintenance
because it will ensure the availability of complete information about any
design element at any time. This feature will greatly assist the maintainer to
understand and analyse the software during maintenance activities.

Modularity

Software can be partitioned into modules (hence its coding). The structure
of the modules may reflect the process of data refinement and functional
decomposition. Modules may be related to each other in either a hierarchical
or a flat network. Modularity (structured design) is very important in deter-
mining software maintainability. If software is modular, it is easier to under-
stand, to track a certain part of the code and its related design deliverables as
well as to perform all maintenance tasks. The structure of a module both in
data and functional structures is also important for maintenance since most
of the new requirements will involve these two structures.

Coupling is one of the criteria for modularity and is concerned with the
connections between modules. The simpler the connections, the weaker the
coupling, implying high maintainability. During maintenance, modification
of a certain module has a low risk of affecting other modules if the coupling
is weak. This is very significant for maintenance, since the task of detecting

Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995 5

Aziz Deraman and P. J. Layzell

ripple effects of a modification will eventually create another maintenance
problem. Weak couplings also imply that simple information is used for
interfacing between modules and therefore will reduce software complexity.

Binding or cohesion is another criterion for modularity and is con-
cerned with the activities within a module. In contrast to the need for low
coupling, a high binding within a module is desirable. According to the clas-
sification given by Stevens et al. 1974, functional binding is required the most
where one module implements only one task or one function. This criteri-
on is important for maintenance purposes, since it is easier to identify and to
understand a module with a single function rather than a module with seve-
ral unrelated functions.

Data Dictionary

Data dictionary is a very important aspect of software development and
maintenance. It is used to define and describe all data structures used in the
system. A good data dictionary will ensure the simplicity of maintenance
tasks. During maintenance, references about data definition, usage etc will
be made easier with a centralized data store in the data dictionary. All con-
sequences to the data affected by maintenance tasks can be comprehensive-
ly located and properly managed.

Prototyping

A methodology that allows prototyping is good for maintenance since all the
user requirements can normally be met before the software is delivered.
With prototyping, users can be given a sample of the product, either in the
form of a screen report or interaction between them and the system. In this
way users can verify whether the given reports are what they really wanted or
not. Any disagreement can be solved earlier in the design stage. Prototyping
can also help users’ and designers’ understanding of the system as sometimes
problems are not well understood until they are implemented. This can lead
to another related criterion, i.e. experimentation. Prototyping can perhaps
assist a designer to produce several solutions through experimentation and
users can choose the best solution to meet their requirements.

Documentation

To complement the requirement for a data dictionary, good documentation
practices and tools are needed throughout the software development life-
cycle. When all development deliverables are well documented, under-
standing a software program is made easier. Good documentation will also
encourage more users’ involvement in the software development. With the
supporting documentation users will find easier to understand and to follow
the software development process. In fact, good documentation and unifor-
mity enforcement are interrelated.

6 Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995

Software Design Criteria for Maintainability

Computer-aided Tools

This criterion is considered compulsory for modern development metho-
dology. Besides speed and consistency, computer-aided tools will provide a
very lively environment when dealing especially with graphical works. The
tools also can be very useful aids in calculating and verifying various quality
metrics. All these will ensure the production of good quality software.
Furthermore, these tools can also be used in a maintenance environment.

User Involvement

More user involvement during software development will produce software
that more accurately meets requirements. This will greatly reduce effort at
least in corrective maintenance. Therefore, a methodology should explicit-
ly define where and what role users should play during the software deve-
lopment life-cycle.

Uniformity

There is a need for uniformity in all procedures and tools used during soft-
ware development such as diagrams, structured text and naming conven-
tions. For example, a square will represent an external entity in all stages of
software development. Consistency in applying these aids will ensure the
integrity and correctness of the design (hence the code). As a result of these
practices, maintainers will find that a software product is much easier to
understand since all related deliverables are based on a uniform structure.

METHODOLOGY ASSESSMENT

Five contemporary software development methodologies have been chosen
for assessment against the proposed design criteria for maintainability.
Information engineering (IE) and SSADM are selected to represent the
newest structured methods, JSD, to represent the very special structured
methods (since it is an extension of the well-known JSP), NIAM, to represent
the very near formal method and RUBRIC, to represent the rule-based
development paradigm. Details of these methods can be found in references
given in the earlier section.

Information Engineering (IE)

* Real world modelling
IE uses the idea of information strategy planning where an information
strategy plan is produced to represent a real world model. This includes
information architecture and business system architecture. This will
enable users such as managers to describe their objectives, requirements
and priorities for system developments.

Pertanika |. Sci. & Technol. Vol. 3 No. 1, 1995

Aziz Deraman and P. J. Layzell

Independence of specification modelling

For this criterion, IE clearly produces only two separate specification
models during business area analysis, i.e. process models and entity mo-
dels. Process models describe business functions, the process of making
up the functions and the process dependencies. Entity models describe
entity types, relationships and attributes, with their properties and their
usage patterns in the business processes. Both of these models are sup-
ported by diagrammatic techniques such as process dependency dia-
grams, state transition diagrams and action diagrams. IE does not men-
tion anything about constraint models but for event modelling, it is
implicitly defined in the process modelling. This can be found in the
process dependency diagram which shows how an event can trigger a
certain process (Macdonald 1986).

Task and HCI models are addressed by IE in the business system design

stage. At this stage one of the tasks is concerned with user-oriented, and
behavioural aspects of the system. Among the products of this stage is business
system specification where user procedures (task models) are defined for
each business process and dialogue and other user interfaces (HCI models)
are defined for each computer procedure.

Explicitness

IE ensures this criterion by using an encyclopedia which keeps track of
all the design decisions during software development and automates
some aspects of the modelling activities. The use of eleven principal dia-
gram types is also helpful to ensure the explicitness of the design within
IE.

Modularity

IE ensures the modularity of the design by employing various features of
structured design techniques such as the use of data flow diagrams,
decomposition diagrams and data structure diagrams. These diagrams
are used in conjunction with several techniques such as entity and function
analysis, interaction analysis, and process logic analysis. However, the
method does not explicitly address coupling and cohesion of the modules.

Secondary maintainability criteria

In general, all the secondary criteria have been satisfied by the IE
methodology. The data dictionary system is represented by the use of the
encyclopedia. All the information relevant to the development process is
stored in the encyclopedia, enabling the methodology to manage and
manipulate development products systematically. Prototyping is fully
supported by IE as needed. The use of various diagrammatic tools to
represent models and designs provides comprehensive support in terms

Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995

Software Design Criteria for Maintainability

of documentation. This documentation and the encyclopedia are in fact
intersupported.

Among the objectives of IE is the automation of its procedures as much
as possible. Therefore IE provides various computer-aided tools to capture
and manipulate diagrams, to interact with the encyclopedia and other man-
agement related tasks.

In terms of user involvement, IE stresses the maximum involvement of
end users in the specification of requirements. In fact, during the design
stage, the use of a user-oriented approach shows how concerned the method-
ology is towards user involvement throughout the development process. This
is also supported by the simplicity of the techniques, and tools, which are
suitable for user understanding. The matter of uniformity is also a great con-
cern of IE methodology, which provides consistent meaning to symbols
employed by the tools. This will encourage thorough understanding by both
users and designers.

Structured System Analysis and Design Method (SSADM)

e Real world modelling
There is no special technique to describe a real world model except to
use data flow diagrams (DFD) to record the current physical system. The
model will show what is done, and also the existing physical aspect of
where and how it is done and who does it. The existence of physical
resources flows in the DFD perhaps can improve the understanding of a
real world model.

o Independence of specification modelling

SSADM defines very clearly the existence of explicit specification modelling
elements. For process modelling, SSADM uses data flow diagrams
(DFDs) to model the functional aspect of the specification. To represent
entity models, SSADM essentially uses the concept of E-R modelling
which is known as logical data structure (LDS). LDS modelling provides
another way of viewing system requirements or specifications. Another
model for system specification is entity life histories (ELH) which is used
to model events. ELH model in fact complements the DFD models
because DFD can only show events by inference from the data flows and
these events are not in order.

SSADM models HCI by the construction of a logical dialogue outline
(LDO) for each event or inquiry found in ELH (see Downs et al. 1988).
These LDOs are then linked together to show a series of ordered tasks that
should be performed, and are represented by logical dialogue controls (task

Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995 9

Aziz Deraman and P. J. Layzell

models). However, for constraint modelling there is no such model defined
in SSADM. Perhaps this model is narratively and implicitly explained in the
problems/requirements lists (PRL) which are used to present all the prob-
lems, requirements and system objectives.

o Explicitness
Within SSADM, the existence of several distinct phases in development
activities with their appropriate tools will ensure this criterion. Further,
the cross-checking feature introduced in the SSADM is also a major fac-
tor that will determine the explicitness of the design activity. For exam-
ple, the data model is inter-cross-checked by top-down logical data struc-
turing technique (LDST) and bottom-up relational data analysis (RDA).

e Modularity
Modularity is supported by three key techniques of data flow diagrams,
logical data structures and entity life histories.

o Secondary maintainability criteria

SSADM generally satisfies all the criteria under this category except data
dictionary. Data dictionary is not defined within SSADM, therefore the
developer has to rely on existing practices within the organization. For
prototyping, SSADM provides support in the early stage of software
development. The simplest form of prototyping can be done through
LDO and LDS, which can give some pictures of human computer inter-
action. The method further supports simulation of the business to show
how the system is proposed and this can be done as part of the process
of selecting a business system option (BSO).

In terms of documentation, SSADM is essentially a diagram-oriented
method in which most of the language used for communication between
users and developers is in the form of diagrams. This will inevitably create
various levels of documentation to support subsequent stages in the software
development and maintenance. To ensure users’ involvement throughout
the development period, SSADM provides a very detailed check list of what
users should do. Simplicity in using the SSADM techniques is achieved by a
set of simple but effective symbols/diagrams used during software develop-
ment. This will also attract more users’ involvement.

Since SSADM is considered a comprehensive but simple method, it can
be easily interfaced with computer-aided tools. One such tool, Automate+
provides support in several areas. It provides facilities to integrate and inter-
face between various tools and techniques within the method, and it also sup-
port prototyping of the user interface dialogue. Automate+ also provides
support for documentation cross-referencing, which is crucial for software
maintenance environment.

10 Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995

Software Design Criteria for Maintainability
Jackson System Development (JSD)

e Real world modelling
In principle, JSD is a real-world modelling based methodology. The first
task in JSD is to model a real world (about happening/event) without
much concern to the aspect of function and data. Real world model is
identified as a model process and is represented by process structure
diagram (PSD) and is used to describe an entity life history.

o Independence of specification modelling

It is difficult to judge whether such an independence of specification
modelling exists in JSD. Modelling activity in J[SD can be considered an
iterative and continuing process throughout modelling and network
stages. JSD firstly identifies its entity model by means of a process structure
diagram (PSD) which is similar to ELH model in SSADM. Within this
model, each entity is modelled together with all processes that might
affect the entity as well as their time ordering. Through several refine-
ments, the PSD will show all events or processes for each entity defined
in the real world (entity life history) and at this stage, this entity model
can also be considered an event model for that entity.

Process modelling is done during preparation of a system specification
diagram (SSD). In SSD, communication (or connection) between processes
is established using data streams connection and state vectors connection. At
the end, SSD becomes an initial model showing processes with inputs and
outputs. During the elaboration phase, SSD is further expanded by adding
different types of function processes again using data streams and state vec-
tors connection and finally SSD becomes a very comprehensive process
model (see Sutcliffer 1988).

HCI modelling is not directly addressed by JSD. However, the occur-
rence of this activity is identified when system input is specified from action
attributes. By means of input filters, HCI model is constructed within the
PSD for each entity, whereby this model is also used for data validation pur-
poses. JSD does not define task and constraint models explicitly. Both of
these models can be found implicitly in PSDs and SSDs.

o [Lxplicilness
The only way JSD supports this feature is perhaps by showing a list of ele-
mentary operations for every SSD in the design.

o Modularity

Modules correspond to entity and function processes in SSD in which
binding rules for a single function within a module can be easily

Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995 11

Aziz Deraman and P. J. Layzell

achieved. Coupling rule is also addressed by J[SD during development of
process networks. For example, state vector connection does not enforce
close coupling between processes since it merely provides a facility to
access information about the related processes.

Secondary maintainability criteria

Not much emphasis has been given to the criteria under this category.
Data dictionary is not part of the methodology, and the developer must
adapt other methods to include this facility. Prototyping is also not part
of the method of implementation in JSD, but some authors like Sucliffe
(1988) have suggested a possible prototyping cycle in JSD. With regard
to documentation, like most structured methods, JSD also creates large vol-
umes of diagrammatic documentation which are considered very well
defined. Unfortunately, this documentation seems to be quite formal,
therefore many authors claim that it is difficult to understand, especially
by novice users. Also, the method does not explicitly deal with user
involvement in the development except during fact finding. The way the
method approaches problems and the type of tools provided also tend to dis-
courage users from becoming involved, especially those who have no
experience in structured methods and in particular, experience with
JSD.

JSD itself does not provide computer-aided tools, but there are some tai-

lor-made tools available to support JSD. For example, JSD specifications can
be documented using Speedbuilder and PDF (program development facili-
ty) can be used to design and document process structure diagrams. To fur-
ther automate the development processes, JSP-COBOL can be used to pro-
duce COBOL code from PDF specification and JSD-FRAME can support the
development life-cycle management.

Nijssens Information Analysis Method (NIAM)

12

Real world modelling

In NIAM, the area of concern is referred as an object system where a real
world model is described in a very simple way. The model is constructed
using a simple hierarchical block diagram which contains all activities
performed in the object system.

Independence of specification modelling

In general, NIAM provides only three explicit specification models
(abstraction system), i.e. process, entity and constraint models. Process
models are represented by information flow diagrams (IFDs). This
model is created for each function and the subsequent subfunction
defined using a functional decomposition diagram. The decomposition

Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995

Software Design Criteria for Maintainability

continues until each function can describe its transformation and infor-
mation flows (in IFDs) in detail. Therefore IFD is quite similar to DFD.

Entity is described (for each information flow) during information
analysis and NIAM uses a sentence model. This model (i.e. each sentence) is
made up of objects (that can be classified into two classes, lexical and non-
lexical objects) and predicates (known as rules in NIAM). Therefore, sen-
tence models are quite similar to E-R models. NIAM concept of sentence
models may be visualized by graphical notations which are called information
structure diagrams (ISDs). With these diagrams, all types of sentence models
can be precisely represented.

To complete the description of an abstraction system, NIAM includes
rules which prescribe the behaviour of the object system. In NIAM, these
rules are called constraints. Most of NIAM constraints have a graphical nota-
tion which can be used to construct constraint models. However in practice,
constraint models are generally incorporated in ISDs (see Verheijen and Van
Bekkum 1982).

o [Explicitness
NIAM satisfies this criterion by formally expressing all design decisions
using its conceptual grammar language in which checking and validation
can be easily done. This is then supported by the activity of modeling all
real world events using ISD which can present explicitly all the relevant
activities and design decisions during software development.

e Modularity
NIAM ensures modularity by enforcing the use of functional decompo-
sition in constructing its IFDs.

e Secondary maintainability criteria

NIAM is essentially a method to analyse information (not a complete and
comprehensive method), therefore most of the criteria under this cate-
gory cannot be evaluated and discussed. However, NIAM provides very
comprehensive documentation. Apart from its diagrammatic represen-
tation, its conceptual grammar using formal language called RIDL (ref-
erential idea language) is very useful to represent an abstraction system
in the formal way.

In the area of computer-aided tools, NIAM analysis is fully supported by
ISDIS, which is the meta-information system (also called information dictio-
nary) that can be used to support all activities of creating and storing dia-
grams, sentences, show the implication and consequences of the specified
conceptual grammar, and compile the conceptual grammar to make it suit-
able for the enforcer of the implementation system.

Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995 13

Aziz Deraman and P. J. Layzell

RUBRIC

e Real world modelling
Within the RUBRIC paradigm, there is no model that explicitly address-
es the real world.

o Independence of specification modelling
Among the objectives of the RUBRIC project is to understand more
clearly the essential components of the system. To achieve this objective,
within the RUBRIC paradigm there exist four explicit specification mod-
els. RUBRIC identifies these models in two modes of requirements, sta-
tic and dynamic.

The static mode pertains to data. Data structures are represented by
structural components which describe the basic objects of a system, in terms
of entities, relationship between entities and domains. This entity model is
similar to the E-R modelling. Another aspect of the data is the existence of
some constraints imposed on a particular entity. Some of these static con-
straints cannot be expressed using E-R notation, therefore constraint models
are developed explicitly to complete the modelling of the data.

Process model (dynamic aspect) is represented by behavioural unit models
which are used to describe discrete units of behaviour exhibited by entities
within a system. In this aspect, there also exists another model, an event
model which is known as dynamic rules in RUBRIC. Dynamic rules describe
the events that trigger the execution of behavioural units and the precondi-
tion that must be specified prior to execution.

o [Lxplicitness
The main idea behind the RUBRIC paradigm is to explicitly separate the
business policy from other aspect of the design. Therefore, we believe
that explicitness is one of the main concerns of the RUBRIC producer.

e Modularity
Modelling of structural components and entity behaviour units facilitate
the organization of modules during design and implementation of the
system.

o Secondary maintainability criteria
The RUBRIC project is still at the development stage. Therefore, many
of the requirements under this category are still at the research stages.
However, in the area of computer-aided tools, RUBRIC is well ahead.
Many of the implementation aspects are planned to be supported by
automated tools such as application controller, MMI management tools
and rule processor.

14 Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995

Software Design Criteria for Maintainability

CONCLUSION

In this paper we have presented our view on software development method-
ology in relation to maintenance problems. We have shown that contents
and presentation of the design especially modelling aspects, are the most
important factors that can facilitate maintenance tasks. Therefore, we have
established several design criteria for maintainability.

We have also made assessments of several methodologies against the pro-
posed criteria for maintainability. The following are summaries of those
assessments (see Table 1):

TABLE 1
Software design criteria vs
software development methodology

CRITERIA METHODOLOGY
E NIAM SSADM JSD RUBRIC

Real World Modelling H M M H L
Independence of
Specification Modelling M H L M
Explicitness H H H I, H
Modularity M M H H M
Data Dictionary H L I I I
Uniformity H L H H I
Prototyping H L M L L
User Involvement H L H L L
Documentation H H H M L
Computer-aided Tools H M M L H
Legend: Score for the Software Design Criteria

H: High M: Moderate L: Low

e Real World Modelling
In this area, JSD places a great deal of emphasis on real world modeling
but the technique is not easy to adapt. NIAM and SSADM use common
techniques of hierarchical block structure and DFD to model their real
worlds. Therefore, we believe the most promising concept of real world
modelling is provided within IE. In spite of common model of real world,
IE also includes aspects of management features with the model which
can further provide elements of strategic planning for future requirements.

Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995 15

Aziz Deraman and P. J. Layzell

Independence of Specification Modelling

All methodologies have explicitly defined the two basic models, i.e.
process and entity models. Event model has been clearly modelled only
in SSADM and RUBRIC. IE incorporates its event model in the process
model while JSD derives this model from the entity model. Constraint
model has been addressed only by NIAM and RUBRIC. NIAM provides a
very comprehensive and detailed classification of this constraint model.

Task and HCI are the two models which have been explicitly addressed

only by SSADM, which defines these two models early in the specification
stage together with other specification models. These models can also be
found in IE and JSD, but they are either indirectly addressed or are pro-
duced late in a detailed design specification. In our view, SSADM is the only
methodology that fully satisfies this criterion.

Explicitness

We believe that this criterion can be practically achieved if a methodo-
logy can provide detailed guidelines together with appropriate tools
throughout the process of software development. Therefore, method-
ologies such as IE, SSADM and NIAM fit best within this criterion. On
the other hand, RUBRIC has the potential to fit this criterion, but unfor-
tunately JSD only provides specification modelling tools to exercise this
criterion.

Modularity

All methodologies assessed are classified as ‘structured methods’.
Therefore, modularity of the design is also one of their primary con-
cerns.

Secondary Maintainability Criteria

Within these criteria, we believe that IE is the most promising method.
It not only has clear and concise guidelines to perform development
tasks, it also provides adequate tools to ensure the simplicity and com-
prehensiveness of the method to be used. SSADM is also good, but without
a properly defined data dictionary, it is difficult to manage, especially
design deliverables, for easy referencing and documentationing purposes.
Although JSD claims to be a complete methodology, the lack of most of
these criteria makes it difficult for use on its own.

From the above discussion, it can be seen that there is a trend for recent

methodology producers to produce software development methodology
which satisfies our criteria for maintainability (for examples, SSADM and
IE). We believe methodologies such as SSADM and IE will be the main pre-
ference for methodology users, because of their clear guidance, detailed

16

Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995

Software Design Criteria for Maintainability

modelling activities, simplicity of use (this reduces training requirements)
and comprehensive supporting tools (for example, UK Government has
adopted SSADM as a standard method for all IT projects).

Finally, we believe that the proposed criteria for maintainability will sup-
port the creation of software development methodology which can produce
maintainable software. The criteria can also be used to evaluate existing
methodology in order to justify any necessity for change especially to cope
with more sophisticated software requirements.

REFERENCES

ARTHUR, L. J. 1985. Measuring Programmer Productivity and Software Quality. New York:
Wiley.

BorHm, B. W., J. R. BROWN, H. KaspAar, M. Lirow, G. J. MAcLEOD and M. J. MERIT. 1978.
Characteristics of Software Quality. Amsterdam: North Holland.

Brict, L. and J. CONNELL. 1983. A methodology for minimizing maintenance costs. AFIPS
1983 National Computer Proceedings. Arlington, Virginia: AFIPS Press. p. 113-122.

CHEN, P.P.S. 1976. The entity relationship model - towards a unified view of data, ACM
Transactions on Database Systems. 1(1): 9-36.

CONNELL, J. and L. BRICE. 1984. Prolonging the life of software AFIPS 1984 National
Computer Procedings, Arlington, Virginia: AFIPS Press. pp 243-249.

DEMARCO, T. 1978. Structured Analysis and System Specification. New York: Yourdon Press.

DICKOVER, M. E., C. L. McGowax and D. T. Ross. 1978. Software design using SADT,
Infotech State of the Art Report, Structured Analysis and Design, Vol II. pp 101-114.
Maidenhead, England: Infortech International.

Downs, E. et al. 1978. Structured Systems Analysis and Design Method: Application and Context.
Hemel Hampstead: Prentice Hall.

Gu, T. 1977. Software Metrics. Cambridge: Winthrop.

HARRISON. R. 1987. Maintenance: giants sleeps undisturbed in federal data centers,
Computerworld March 9: 81-86.

HEKMATPOUR, S and D. INCE. 1988. Softwareprototyping: Format Methods and VDM. Addison-
Wesley.

JacksoN, MLA. 1975. Principles of Program Design. Academic Press.
JACKSON, M. 1983. Systems Development. Prentice-Hall International.

LAvzELL, P. J. and P. LoucorPouLos. 1988. A rule-based approach to the construction and
evaluation of business information systems. In Proc. of Conference on Software
Maintenance-1988. New York: Computer Soc. Press, IEEE.

LINEHAN T.F. 1988. Application software configuration management and testing in a phar-
maceutical laboratory automatic environment. In Proc. of Conference on Software
Maintenance-1988, pp 178-182. New York: Computer Soc. Press, IEEE.

Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995 17

Aziz Deraman and P. J. Layzell

LONGWORTH, G. 1985. Designing System For Change. Manchester: NCC .

LONGWORTH, G. 1989. Getting the System You Want: A User’s Guide to SSADM. Manchester:
NCC.

MACDONALD, L.G. 1986. Information engineering: an Improved, automatable methodolo-
gy for the design of data sharing system. In: Information System Design Methodologies:
Improving the Practices ed. T. W. Olle, H. G. Sol and A. A. Verrijin-Stuart. p. 173-224.
Amsterdam: North-Holland.

MEVERS, G. J. 1975. Reliable Software Through Composite Design. Petrocelli Charter.
ORR, K. T. 1977. Structured System Development. New York: Yourdon Press.

PERLIS, A., F. SAYEARD and M. SHAW (eds). 1981. Software Metrics: an Analysis and Evaluation.
Boston, MA: MIT Press.

Ross, D. T. 1977. Structured analysis (SA): a language for communicating ideas, /EEE
Transaction on Software Engineering 3: 16-34.

Stay, J. F. 1976. HIPO and integrated program design. /BM System _Journal 15: 2

STEVENS, W., G. MEYER and L. CONSTANTINE. 1974 Structured Design. IBM System Journal
13(3): 115-139.

SUTCLIFFE, A. 1988. Jackson System Development. New York: Prentice-Hall.

SwaNsoy, E. B. 1976. The dimension of maintenance. In Proc of 2nd International Conf. on
Software Engineering, San Francisco, Oct 1976. p. 492-497.

TINNIRELLO, P.C. 1984. Software maintenance in fourth-generation language environ-
ments. In AFIPS 1984 National Computer Proceedings. pp 251-257. Arlington, Virginia:
AFIPS Press.

VERHEIEN, G. M. A. and J. VAN BERKUM. 1982. “NIAM: an information analysis method. In:
Information System Design Methodologies: A Comparative Review ed. T. W. Olle, H. G. Sol
and A. A. Verrijin-Stuart. Amsterdam: North-Holland.

WEINER, R. and R. SINCOREC. 1984. Software Engineering with Modula-2 and Ada. New York:
Wiley.

Yourpox, E. 1984. The structured paradigm - a perspective. In Structured Method: State of
The Art Report 12:1. p. 141-151. Pergamon Infotech Ltd.

YOURDON, E. and L. CONSTANTINE. 1979. Structured Design. Englewood Cliffs, N. J: Prentice-
Hall,

ZVEGINTZOV, N. 1983. Nanotrends. Datamation August 106-116.

18 Pertanika J. Sci. & Technol. Vol. 3 No. 1, 1995

