UNIVERSITI PUTRA MALAYSIA

COMPARING DRYING CHARACTERISTICS OF MELANTAI, KELEDANG, KEKATONG AND KHAYA TIMBERS USING THREE DIFFERENT DRYING METHODS

ZAIRUL AMIN RABIDIN

FH 2012 17
COMPARING DRYING CHARACTERISTICS OF MELANTAI, KELEDANG, KEKATONG AND KHAYA TIMBERS USING THREE DIFFERENT DRYING METHODS

ZAIRUL AMIN RABIDIN

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2012
COMPARING DRYING CHARACTERISTICS OF MELANTAI, KELEDANG, KEKATONG AND KHAYA TIMBERS USING THREE DIFFERENT DRYING METHODS

By

ZAIRUL AMIN RABIDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2012
DEDICATIONS

Dedicated to my parents, Rabidin and Zainab
for caring and never ending love

my beloved wife, Siti Melor
for supporting me enormously, all the time and all the way

my son, Hamizan and my daughter, Nurhamizah
for his/her much joy
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

COMPARING DRYING CHARACTERISTICS OF MELANTAI, KELEDANG, KEKATONG AND KHAYA TIMBERS USING THREE DIFFERENT DRYING METHODS

By

ZAIRUL AMIN RABIDIN

December 2012

Chairman: Professor Mohd Hamami Sahri, PhD

Faculty: Forestry

A study was undertaken to determine and compare drying characteristics of melantai (Shorea spp.), keledang (Artocarpus spp.), kekatong (Cynometra spp.) and khaya (khaya grandifoliola) representing light hardwood, medium hardwood, heavy hardwood, and plantation timbers dried using air drying, kiln drying and radio frequency/vacuum drying systems. The specific objectives of these studies were; firstly, to determine physical properties of timbers related to drying, i.e. moisture content, density, and shrinkage; secondly, to compare characteristics of 30 mm thick, end-matched lumbers dried by these three different drying methods; and thirdly, to evaluate effect of thickness (30 and 55 mm thick), degree of vacuum and temperature settings, mode of heating (continuous and intermittent) and surface quality (planed/unplaned) on drying time and quality of RFV dried timber. Drying characteristics of the timbers were compared at final moisture content (MC), i.e. 15-18% MC for air drying and 12% MC for kiln- and RFV-drying, in terms of drying
time, drying rate, formation of defects, shrinkage, moisture distribution between and within the lumbers, and drying stresses.

Moisture content of keledang in green condition was relatively higher than khaya, followed by melantai and kekatong. The highest density and shrinkage in all directions were observed in kekatong. Density of keledang was higher than melantai and khaya but the shrinkage values for these three timber species were not too different.

RFV drying reduces the drying time compared with kiln drying. The percentage of reduction in drying time for 30 mm thick lumbers were about 56.3% for melantai, 19.4% for keledang, and 47.4% for kekatong. Generally, air dried timber for 30 mm thick lumbers posses more uniform moisture content between lumbers than those RFV- and kiln-dried. However, moisture gradient in 55 mm thick lumbers was relatively higher than 30 mm thick. The variation of moisture content between and within lumbers for RFV dried timber was lower than that of kiln dried. Within lumbers, RFV dried timber had lower inner-outer moisture content difference than that of kiln dried lumbers. A number of lumbers dried by RFV had a drier inner compared to the outer layer. In RFV drying, the moisture content of the lumbers increased from the centre towards the bottom and top of the stack. The quality of melantai, keledang and khaya dried by air drying, kiln drying and RFV drying were comparable. The quality of kekatong lumbers dried by RFV was comparable to air dried and relatively better than kiln dried. Shrinkage of the timber dried by RFV was almost similar to air drying, but lower than kiln drying. Ratio of tangential to radial shrinkage and volumetric shrinkage for RFV dried was relatively lower than kiln
dried lumbers. No casehardening was observed on all species dried by air drying. Casehardening is lower in RFV dried timber as compared to kiln drying.

RFV drying times increased with increasing thickness. The percentage of increment in drying time for dense timber was relatively higher than less dense timber. Moisture content variation within lumber for 30 mm and 55 thick lumbers were within the acceptable limit of ±2%. Planing timber before RFV drying not only facilitate timber stacking but also reduced the drying time and moisture content variation between and within lumbers. Drying time for lumbers dried under intermittent mode of heating was higher than continuous mode. In general, melantai, keledang and khaya can be dried successfully under continuous mode of heating with temperature and pressure set at 40°C and 40 torr respectively. Slower drying settings, i.e. drying under intermittent mode of heating and at 50 torr vacuum pressure should be used when drying kekatong.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

PERBANDINGAN CIRI-CIRI PENERINGAN KAYU MELANTAI, KELEDANG, KEKATONG DAN KHAYA DIKERING MENGGUNAKAN TIGA KAEDAH PENERINGAN BERBEZA

Oleh

ZAIRUL AMIN RABIDIN

Disember 2012

Pengerusi: Profesor Mohd Hamami Sahri, PhD

Fakulti: Perhutanan

Kajian telah dijalankan untuk menentukan dan membandingkan ciri-ciri pengeringan kayu melantai (Shorea spp.), keledang (Artocarpus spp.), kekatong (Cynometra spp.) dan khaya (khaya grandifoliola) mewakili kelas kayu keras ringan, kayu keras sederhana, kayu keras berat serta kayu ladang yang dikeringkan dengan sistem pengeringan udara (AD), pengeringan tanur (KD) dan pengeringan frekuensi radio/hampagas (RFV). Objektif spesifik kajian ini adalah; pertama, untuk menentukan sifat-sifat fizikal kayu berkaitan pengeringan iaitu kandungan lembapan, ketumpatan dan kecutan; kedua, untuk membandingkan ciri-ciri pengeringan kayu berketebalan 30 mm, dipotong secara berturutan dari papan asal yang sama, yang dikering menggunakan kaedah yang berbeza; dan ketiga, untuk menilai kesan ketebalan (30 dan 55 mm tebal), darjah hampagas dan ketetapan suhu, mod pemanasan (berterusan dan ulangan) dan kualiti permukaan kayu (diketam/tidak diketam) terhadap masa pengeringan dan kualiti kayu. Ciri-ciri pengeringan kayu dibandingkan pada kandungan lembapan akhir, iaitu 15-18% MC untuk pengeringan
udara dan 12% untuk pengeringan tanur dan RFV, dilihat dari segi masa pengeringan, kadar pengeringan, pembentukan kecacatan, kecutan, taburan kandungan lembapan antara keping papan dan dalam papan itu sendiri serta tegasan pengeringan.

Kandungan lembapan kayu keledang didapati lebih tinggi dari khaya, diikuti oleh melantai dan kekatong. Kekatong mempunyai ketumpatan dan kecutan pada semua arah yang paling tinggi berbanding kayu lain. Ketumpatan keledang didapati lebih tinggi dari melantai dan khaya tetapi nilai kecutan untuk ketiga-tiga spesis kayu tidak terlalu berbeza.

Pengeringan menggunakan RFV dapat mengurangkan masa pengeringan berbanding pengeringan tanur. Peratus pengurangan masa pengeringan untuk papan melantai berketebalan 30 mm sekitar 56.3%, 19.4% untuk keledang dan 47.4% untuk kekatong. Secara umumnya, kayu dikering udara mempunyai kandungan lembapan antara papan yang lebih seragam berbanding keringan RFV dan KD. Walaubagaimanapun, cerun kandungan lembapan bagi papan berketebalan 55 mm adalah lebih tinggi dari papan 30 mm. Taburan kandungan lembapan antara papan yang dikering RFV lebih rendah dari keringan KD. Perbezaan kandungan lembapan antara bahagian dalam dan bahagian luar kayu dikering menggunakan sistem RFV juga didapati lebih rendah dari keringan KD. Beberapa keping papan dikering menggunakan RFV didapati mempunyai kandungan lembapan lebih rendah di bahagian dalam berbanding bahagian luar. Dalam pengeringan RFV, kandungan lembapan kepingan papan meningkat dari bahagian tengah ke bahagian atas dan bawah susunan kayu. Kualiti kayu melantai, keledang and khaya yang dikering AD,

Masa pengeringan menggunakan sistem RFV meningkat dengan ketebalan kayu. Dengan pertambahan ketebalan, peratus peningkatan masa pengeringan bagi kayu berketumpatan tinggi adalah lebih tinggi berbanding kayu berketumpatan rendah. Taburan kandungan lembapan dalam kayu bagi papan berketebalan 30 dan 55 mm adalah dalam lingkungan ±2%. Kayu yang telah diketam bukan sahaja mudah disusun malah dapat mengurangkan masa pengeringan dan taburan kandungan lembapan antara dan dalam papan. Masa pengeringan menggunakan mod pemanasan ulangan secara relatifnya lebih tinggi berbanding mod pemanasan berterusan. Secara umum, masa pengeringan yang pantas untuk melantai, keledang, dan khaya dapat dicapai apabila dikering pada mod berterusan dengan suhu dan tekanan masing-masing ditetapkan pada 40°C and 40 torr. Ketetapan pengeringan lebih perlahan diperlukan apabila mengerkingan kekatong iaitu pada mod ulangan dan tekanan lebih tinggi (50 torr).
ACKNOWLEDGMENTS

In the name of Allah, the Most Gracious and the most Merciful
Peace and blessings of Almighty upon His Prophet Muhammad (Salla-Allah-o-
Alaihi-Wa-Sallam).

I would like to express my profound gratitude and appreciation to my supervisor, Professor Dr Mohd Hamami Sahri for his immense contribution, constant guidance, and invaluable advice throughout the course of this study. My appreciation also goes to Professor Dr Zaidon Ashaari and Dr Gan Kee Seng, members of supervisory committee, for their assistance and suggestions throughout the preparation of this thesis. To Dr. Gan Kee Seng, many thanks for providing technical support and giving me opportunity to involve in this project.

Acknowledgement is due to Forest Research Institute Malaysia (FRIM) for providing financial support and facilities. I would also like to thanks all the technical staff in Wood Drying Laboratory, Sawmill and Woodworking Workshop, FRIM (Mashila, Tanjong, Jamal, Khairul Maseat, Wan Zahari, Shamsul, Karim and Asman) for their technical assistance especially during preparation of samples.
I certify that a Thesis Examination Committee has met on 6 December 2012 to conduct the final examination of Zairul Amin bin Rabidin on his thesis entitled "Comparing Drying Characteristics of Melantai, Keledang, Kekatong and Khaya Timbers Using Three Different Drying Methods" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Edi Suhaimi Bakar, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

H’ng Paik San, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Jegatheswaran, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Razak Wahab, PhD
Professor
Faculty of Agro Industry and Natural Resources
Universiti Malaysia Kelantan
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 February 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Hamami Sahri, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Zaidon Ashaari, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

Gan Kee Seng, PhD
Senior Research Officer
Wood Drying Laboratory
Forest Products Division
Forest Research Institute Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

ZAIRUL AMIN BIN RABIDIN

Date: 6 December 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION 1
1.1 Background 1
1.2 Problem Statements 3
1.3 Objective 4
1.4 Contribution of Study 5

2 LITERATURE REVIEW 6
2.1 Introduction 6
2.2 Overview on Timber Drying Method 7
2.2.1 Air Drying 7
2.2.2 Solar Drying 8
2.2.3 Kiln Drying 8
2.2.4 Dehumidification Kiln Drying 9
2.2.5 Vacuum Drying 10
2.2.6 Special Drying Methods 11
2.3 Dielectric Heating of Wood 11
2.4 Factors Affecting Dielectric Properties of Wood 15
2.5 Radio Frequency/Vacuum Drying 17
2.6 Characteristics of RFV Drying 20
2.6.1 Drying Time 20
2.6.2 Drying Defects 24
2.6.3 Moisture Content Variation 24
2.6.4 Shrinkages 25
2.6.5 Colour Changes 25
2.6.6 Drying Stresses 26
2.6.7 Equilibrium Moisture Content 27
2.6.8 Improvement of Wood Permeability 27
2.6.9 Strength Properties 28

xiii
2.6.10 Drying Capacity 29
2.6.11 Cost of Drying 30
2.6.12 Hybrid Drying System 31

2.5 Description of Timber Species 32
2.5.1 Melantai 32
2.5.2 Keledang 33
2.5.3 Kekatong 34
2.5.4 Khaya 35

3 PHYSICAL PROPERTIES OF THE TIMBERS 37
3.1 Introduction 37
3.2 Materials and Methods 39
3.2.1 Selection of Species 39
3.2.2 Diameter of Log 39
3.2.3 Moisture Content, Density and Volumetric Shrinkage 40
3.3 Results and Discussion 42
3.3.1 Moisture Content, Density and Volumetric Shrinkage 42
3.3.2 Variation of Physical Properties across the Diameter 47
3.4 Conclusion 49

4 CHARACTERISTICS OF TIMBERS DRIED USING AIR DRYING, KILN DRYING, AND RADIO FREQUENCY/VACUUM DRYING SYSTEMS 51
4.1 Introduction 51
4.2 Materials and Methods 53
4.2.1 Log Sawing 53
4.2.2 Preparation of Samples 55
4.2.3 Drying Procedure 59
4.2.4 Evaluation of Drying Characteristics of the Timber 66
4.3 Results and Discussion 73
4.3.1 Characteristics of Timber Dried Using Air Drying, Kiln Drying, and Radio Frequency/Vacuum Drying System 69
4.3.2 Effect of Thickness, Surface Quality, and Heating Mode on RFV Drying Of Wood 102
4.4 Conclusion 120

5 GENERAL CONCLUSIONS AND RECOMMENDATIONS 123
5.1 Conclusions 123
5.2 Recommendations 126

REFERENCES 128
APPENDICES 144
BIODATA OF STUDENT 145
LIST OF PUBLICATIONS 146