EXTENSION OF VASE LIFE OF CUT ORCHIDS USING OZONATED WATER AND 1-METHYLCYCLOPROPENE

PARVIZ ALMASI

FP 2013 20
EXTENSION OF VASE LIFE OF CUT ORCHIDS USING OZONATED WATER AND 1-METHYLCYCLOPROPENE

By

PARVIZ ALMASI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Pura Malaysia
DEDICATION

This thesis is dedicated to all I love specially

To the soul of my parents, my beloved mother and father

In the heaven who regretfully did not live to see this work.

To my beloved wife Naiyer, my sons, Parsa and Amin

For the unconditional patience, love and support.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

EXTENSION OF VASE LIFE OF CUT ORCHIDS USING OZONATED WATER AND 1-METHYLICYCLOPROPENE

By

PARVIZ ALMASI

May 2013

Chairperson: Professor Mahmud Tengku Muda Mohamed, PhD

Faculty: Agriculture

Orchid industry has a particular situation within ornamental plants in Malaysia. As, 46% of total floriculture industry was occupied by orchid flowers in 2011. Most cut orchid flowers are ethylene sensitive in the spite of having acceptable longevity and postharvest life. When they are packed for export they show ethylene injury symptoms such as bud and floret abscission and short vase life. 1-MCP can control ethylene production and action and probably reduces the ethylene sensitivity. Another possible reason for the short span life may be microbial blockage in xylem conduits. Aqueous ozone can be a good candidate for improving the water conductivity in cut stems by its microbial growth inhibition effect.

1-mythylcyclopropane (1-MCP) and aqueous ozone were used for controlling ethylene sensitivity and inhibition of xylem blockage in two ethylene-sensitive cut orchids, Dendrobium ‘Darren Glory’ and Mokara ‘Calypso Jumbo’. Three experiments were conducted at Department of Crop science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan.
In experiment one, inflorescences of 12 cut orchid hybrids consisted of six cut *Dendrobium* hybrids (*Dendrobium* ‘Darren Glory’, *D*. ‘Sonia Red’, *D*. ‘Sonia White’, *D*. ‘Sonia Bom’, *D*. ‘Shavin White’ and *D*. ‘Jacqueline Concert’ x *D*. ‘Rinappa’) and six *Mokara* hybrids (*Mokara* ‘Calypso Jumbo’, *M*. ‘Chao Praya Classic’, *M*. ‘Citi Gold’, *M*. ‘Boy Blue’, *M*. ‘Red’ and *M*. ‘Chak Kuan Blue’) were determined for their ethylene sensitivity levels. Inflorescences were treated with 0 and 10 µL/L ethylene gas for 24 hours in 79 L chambers. The chambers were aerated and stems of flowers were trimmed and placed in PE bags containing vase solution [distilled water + 250 mg/L 8-hydroxyquinoline citrate (8-HQC) + 150 mg/L citric acid + 4% sucrose, pH=3.5]. Weight loss, vase life, ethylene production and anthocyanin content and expression of ACC synthase and ACC oxidase genes of florets were determined. Results showed that exposure to ethylene caused reduction of vase life tremendously. This was manifested by epinasty, premature wilting and abscission in florets and buds for all hybrids. Weight loss and anthocyanin degradations increased when flowers were exposed to ethylene. After exposure to ethylene, higher expressions of both ACS and ACO genes were found in fully open florets. However, different hybrids showed distinct responses to ethylene sensitivities and degrees of deterioration. Therefore, they can be categorized into two groups, sensitive and less sensitive. *Dendrobium* ‘Darren Glory’, *D*. ‘Jaquelyne Concert’ x *D*. ‘Rinappa’, *Mokara* ‘Calypso Jumbo’, *M*. ‘Chao Praya Classic’(MCPC) and *M*. ‘Red’ exhibited the utmost epinasty, weight loss and anthocyanin content degradation in sepals and petals thus, can be considered as sensitive group while the rest were less sensitive.
In the second experiment, the inflorescences of two very sensitive (Dendrobium ‘Darren Glory’ and Mokara ‘Calypso Jumbo’) and two less sensitive (D. ‘Sonia Bom’ and M. ‘Citi Gold’) hybrids that were determined in experiment first, were studied. Inflorescences were divided into two groups and placed in two 79 L chambers. For fumigation of 0 and 300 nL/L 1-MCP, a small vial containing 37.92 mg Ethylbloc was taped to the one chamber’s internal wall. Then, 190 µL/L deionized water was added to the vial. Both chambers were immediately sealed for 4 hours. Then inflorescences of each chamber divided into two subgroups and after labeling the four 39.5 L chambers inflorescences were placed inside them gently. The chambers were hermetically-sealed. Then, two separate 1µL/L ethylene gas, balanced with nitrogen, were injected into the one chamber of each subgroup. After 24 hours the chambers were opened and each inflorescence’s basal stem was trimmed to 12 cm from the first open floret. Then, each inflorescence was placed in the bottle with a cylindrical polyethylene bag containing 60 ml distilled water and kept in the laboratory at means temperature, relative humidity and light intensity of 25 °C, 78% and 6.57 µmol/m²/s, respectively.

The results showed that weight loss in all four hybrids after 1-MCP fumigation even with exogenous ethylene treatment remarkably declined except MCG which did not show any variation to the responses of all treatments. Vase life responses of highly sensitive and less sensitive hybrids to the 1-MCP were positive but almost different. Maximum vase life extension was observed in highly sensitive hybrid (MCJ) about 59% with 300 nL/L 1-MCP treatment and minimum extension was occurred in less sensitive hybrid
(MCG) around 39%. So it can be suggested that the effectiveness of 1-MCP on the control of ethylene sensitivity in highly sensitive hybrids was more.

In the third experiment, effects of 1-MCP and aqueous ozone on postharvest quality of two very sensitive cut flowers; *Dendrobium* ‘Darren Glory’ and *Mokara* ‘Calypso Jumbo’ were studied. The inflorescences were treated with 0 and 300 nL/L 1-MCP. After four hours, the chambers were aerated and the stems were trimmed to 12 cm from the basal end of the first open floret. Each inflorescence was put into a bottle containing 250 mL of distilled water (control treatment) and 5.2 mg/L aqueous ozone. Ethylene production, microbial growth, bud opening, 1-aminocyclopropan oxidase activity (ACO) and vase life were measured. Results showed 1-MeCP can control the ethylene production within 5 day after harvest in both studied cut orchids very well and also ethylene production and ACO activity in *D. ‘Darren Glory’* was higher than *M. ‘Calypso Jumbo’*. Aqueous ozone (5.2 mg/L) declined microbial (bacteria, fungi and yeast) growth when it used as the vase solution and every 24 hours replenished and consequently it was effective on decreasing xylem blockage and the micro-graphs from the xylem showed it clearly.

In the forth experiment effects of 4 concentrations of 1-MCP and optimum concentration of aqueous ozone on postharvest quality of sensitive cut flower; *Mokara* ‘Calypso Jumbo’ were studied. The inflorescences were fumigated with 0, 100, 200, 300 and 400 nL/L 1-MCP. After four hours fumigation, the stems were trimmed to 12 cm from the basal end of the first open floret. First 30 inflorescences with and without 1-
MCP fumigation were cut with scalpel into two parts: one had only buds and another one had only open florets. Stem ends were placed in distilled water and ozonized water and then used for ACC content and ACC oxidase activity measurements. Remaining fifty intact inflorescences were placed into the bottles each one, containing 250 mL of distilled water or 3.9 mg/L aqueous ozone based on the combination treatments. Ozonized water was renewed at every 24 hours, but for the rest treatments, vase water was not changed until end of vase life.

The results showed that fumigation of the cut *Mokara* ‘Calypso Jumbo’ flowers with 100 nL/L 1-MCP, followed by using 3.9 mg/L aqueous ozone as the vase water could be recommended as the best postharvest treatments to maintain quality and extend vase life of MCJ orchid hybrids. In addition, these treatments for MCJ were very effective in extending vase live, increasing water uptake and percentage bud opening and also controlling the bacterial growth in vascular system.

Therefore, optimum postharvest treatments for the cut orchid flowers depended on hybrids. Pretreatment of the cut orchid flowers with 100-300 nL/L 1-MCP, followed by using 3.9 mg/L aqueous ozone as the vase solution could be recommended as the optimum postharvest treatments to maintain quality and extend vase life of both the DDG and MCJ orchid hybrids. In addition, 1-MCP pretreatment for MCJ was very effective in extending vase lives and increasing percentage bud opening. Additionally, aqueous ozone can effectively decreased number of bacteria in vase water and vascular vessels. Another important finding of this experiment was the cause of short
vase life in the two cut orchid hybrids. The main reason for the short vase life was due to ethylene sensitivity of the cut flowers and not due to xylem blockage.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

LANJUTAN DAIPADA KEHIDUPAN PASU KERATAN KACUKAN ORKID MENGGUNAKAN AIR OZONATED DAN 1-METHYLCYCLOPROPENE

Oleh

PARVIZ ALMASI

Mei 2013

Pengerusi: Professor Mahmud Tengku Muda Mohamed, Ph.D.

Fakulti: Pertanian

Industri orkid mempunyai kedudukan penting dalam industri tanaman hiasan di Malaysia. Pada tahun 2011, daripada keseluruhan industri florikultur, 46% adalah daripada tanaman orkid. Kebanyakan keratan bunga orkid adalah sensitif terhadap etilena walaupun mempunyai hayat pasuan dan lepas tuai yang bersesuaian. 1-MCP boleh mengawal pengeluaran dan tindakan etilena yang mungkin dapat mengurang-kan kepekaan terhadap etilena. Selain itu, ozon akueus boleh menjadi kaedah yang baik untuk meningkatkan aliran air dalam batang yang disebabkan oleh kurangnya mikrob tersumbat dalam saluran xilem.

Oleh itu, kajian telah dijalankan ke atas keratan orkid hibrid Dendrobium spp. dan Mokara spp. untuk melihat kepekaan kepada etilena. Seterusnya, 1-methylcyclopro-pane (1-MCP) dan ozon akueus telah digunakan, masing-masing untuk mengawal kepekaan terhadap etilena dan menghalang xilem tersumbat,. Tiga eksperimen telah dijalankan di Makmal Lepas Tuai, Jabatan
dikategorikan kepada dua kumpulan, sensitif dan kurang sensitif. DDG, DJCR, MCJ, MCPC dan MR menunjukkan epinasti, kehilangan berat dan degradasi kandungan antosianin dalam sepal dan kelopak yang tinggi, menjadikan ia boleh dianggap sebagai kumpulan yang sensitif manakala selebihnya adalah kurang sensitif.

Dalam eksperimen kedua, dua hibrid bunga sensitif (DDG dan MCJ) dan kurang sensitif (DSB dan MCG) yang telah ditentukan dalam eksperimen pertama telah dilakukan kajian lanjut. Bunga telah dibahagikan kepada dua kumpulan dan diletakkan dalam dua bekas berisipadu 79 L. Untuk pendedahan kepada 0 dan 300 nL/L 1-MCP, botol kecil yang mengandungi 37.92 mg Ethylbloc dilekatkan pada dinding bahagian dalam bekas. Kemudian, 190 μL/L air dinyah ion ditambah kepada botol tersebut. Kedua-dua bekas segera ditutup selama empat jam. Kemudian, bunga dari setiap bekas dibahagikan kepada dua kumpulan kecil dan diletakkan dalam dua bekas 39.5 L yang telah dilabel. Bekas ditutup rapat. Kemudian, 1 μL/L gas etilena yang diseimbangkan dengan nitrogen disuntik dalam bekas tersebut. Selepas 24 jam, bekas dibuka dan setiap batang bunga dipotong sehingga 12 cm dari bunga kecil terbuka pertama. Seterusnya, setiap batang bunga diletakkan dalam botol berisi satu beg polietilena berbentuk silinder yang mengandungi 60 ml air suling dan disimpan pada suhu makmal, 25 °C, kelembapan relatif, 78% dan keamatan cahaya 6.57 μmol/m2/s. Hasil kajian menunjukkan pengurangan berat bagi tiga daripada empat kacukan menurun dengan ketara selepas rawatan 1-MCP, walaupun telah didedahkan kepada etilena secara luaran, kecuali untuk MCG yang tidak menunjukkan sebarang perubahan sebagai tindakbalas kepada semua rawatan. Hayat pasuan juga

XI
dilanjutkan pada tahap yang berbeza. Lanjutan hayat pasuan maksima
diperhatikan dalam hibrid sensitif, MCJ dan lanjutan minima dalam hibrid
kurang sensitif, MCG, dengan masing-masing kira-kira 59 dan 39% hari
tambah, dalam larutan pasu dengan 300 nL/L rawatan 1-MCP. Bertepatan
dengan 1-MCP yang dikenali sebagai anti-etilena, ia boleh dicadangkan
bahawa apabila etilena berada dalam kawalan, hayat pasuan boleh
dilanjutkan pada tahap yang berbeza bergantung kepada jenis hibrid.

Dalam eksperimen ketiga, kesan 1-MCP dan ozon akueus kepada kualiti
lepas tuai dua hibrid bunga sensitif, DDG dan MCJ dikaji. Bunga dirawat
dengan 0 dan 300 nL/L 1-MCP. Selepas empat jam, bekas diudarakan dan
hujung batang bunga dipotong 12 cm dari bunga kecil terbuka
pertama. Setiap batang bunga dimasukkan ke dalam botol yang
mengandung 250 mL air suling (rawatan kawalan) dan 5.2 mg/L ozon
akueus. Pengeluaran etilena, pertumbuhan mikrob, pembukaan putik, aktiviti
1-aminocyclopropane oxidase (ACO) dan hayat pasu diukur. Keputusan
menunjukkan bahawa 1-MCP boleh mengawal pengeluaran etilena dalam
masa 5 hari selepas penuaian bagi kedua-dua hibrid. Walau bagaimanapun,
pengeluaran etilena dan aktiviti ACO dalam DDG adalah lebih tinggi daripada
MCJ. Ozon akueus (5.2 mg/L) yang diisi semula setiap hari berjaya
mengurangkan pertumbuhan mikrob (bakteria, kulat dan yis) dan seterusnya,
mengawal xilem tersumbat yang mana jelas ditunjukkan dari graf mikro.

Oleh itu, rawatan lepas tuai optima untuk keratan orkid yang sensitif etilena
bergantung pada kacukan. Rawatan awal keratan bunga orkid dengan 300
nL/L 1-MCP diikuti dengan 5.2 mg/L ozon akueus sebagai larutan pasu boleh disyorkan sebagai rawatan lepas tuai pilihan untuk mengekalkan kualiti dan memanjangkan hayat pasu kedua-dua hibrid orkid, DDG dan MCJ. Di samping itu, prarawatan 1-MCP untuk MCJ adalah sangat berkesan dalam memanjangkan hayat pasu dan meningkatkan peratusan pembukaan putik.
ACKNOWLEDGEMENTS

Most of all, all praises and endless thanks to God, the Almighty. The most Beneficent and Merciful to making it possible for me that complete this investigation.

It pleased me to take this opportunity to convey my deepest appreciation and gratitude to my supervisor Prof. Mahmud Tengku Muda Mohamed for her generous help, invaluable guidance, patience and support throughout the completion of this thesis. My grateful appreciation is also due to Associate Professor Dr. Siti Hajar Ahmad for his guidance, valuable advice and helpful suggestions. I am also obliged and grateful to Associate Professor Dr. Jugah Kadir for her invaluable assistance. I really appreciate them for serving on my supervisory committee.

I would like to thank all the staff of the Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM) especially Mr Mahbub Shah Gohar Shah, Assistant Science Officer, and Mr Azhar Othman the technician of postharvest laboratory. I want to give utmost appreciation to all my friends especially Dr. Amin Mirshekari, Babak Madani and Hamizah Hassan. My profound and heartiest thanks and love to my wife for her love, patience, encouragement and constant support during this study. My special and heartiest thanks and love towards our sons for being a kind and constant encouragement during the entire study period. Last but certainly not least, I wish to express my sincere appreciation to all those who are not mentioned here that helped me to ensure the completion of my study.
I certify that a Thesis Examination Committee has met on 27 May 2013 to conduct the final examination of Parviz Almasi on his thesis entitled "Extension of Vase Life of Cut Orchids using Ozonated Water and 1-Methyloclopropene" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Phebe Ding, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Yahya bin Awang, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Puteri Edaroyati bin Megat Wahab, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Saichol Ketsa, PhD
Professor
Kasetsart University
Thailand
(External Examiner)

\[signature\]

NORITAH OMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 2 August 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mahmud Tengku Muda Mohamed, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairperson)

Siti Hajar Ahmad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Jugah Kadir, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: ________________

Name and Matric No.: __ PARVIZ ALMASI GS19027 ________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>II</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>III</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>IX</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>XIV</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>XV</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>XVII</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XXIII</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XXV</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XXXII</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION

1.1 Importance of Orchid Industry
1.2 Factors Affecting on Vase-Life
1.3 Problem Statements
1.4 Objective of the Study

2 LITERATURE REVIEW

2.1 Orchids

2.1.1 Orchid industry in Malaysia
2.1.2 Genus *Dendrobium*
2.1.3 Genus *Mokara*

2.2 Factors affecting postharvest quality of cut flowers

2.2.1 Genus, hybrid and cultivar
2.2.2 Pre-harvest conditions
2.2.3 Postharvest factors

2.2.3.1 Vase solution
2.2.3.2 Food supply
2.2.3.3 Temperature
2.2.3.4 Xylem blockages
2.2.3.5 Ethylene

2.2.4 1-methylcyclopropane (1-MCP)

2.2.4.1 Effect of 1-MCP on ethylene production

XVIII
2.2.4.2 Effect of 1-MCP on ACS and ACO 33
2.2.4.3 Effect of 1-MCP on weight loss and vase life 35
2.2.4.4 Mode of action 36
2.2.4.5 Factors affecting 1-MCP effects 38
2.2.5 Ozone 43
2.2.5.1 Ozone Phytotoxicity 44
2.2.5.2 Ozone as antibacterial treatment in agriculture 45
2.2.5.3 Mechanism of action of ozone 46
2.2.5.4 Effect of O₃ on weight loss and vase life 48

3 EVALUATION OF ETHYLENE SENSITIVITY IN CUT DENDROBIUM AND MOKARA HYBRIDS 50
3.1 Introduction 50
3.2 Materials and methods 53
3.2.1 Material and treatments 53
3.2.2 Measurement of ethylene production 54
3.2.3 Anthocyanin content 55
3.2.4 Weight loss measurement 55
3.2.5 Determination of vase life 55
3.2.6 Determination of expression of ACC synthase and oxidase genes 56
3.2.6.1 RNA Extraction 56
3.2.6.2 Reverse Transcription polymerase Chain Reaction (RT-PCR) 56
3.2.7 Experimental design and statistical analysis 57
3.3 Results and discussion 58
3.3.1 Effect of exogenous ethylene on endogenous ethylene 58
3.3.2 Effect of exogenous ethylene on anthocyanin content 61
3.3.3 Effect of exogenous ethylene on fresh weight loss 63
3.3.4 Determination of vase-life 66
3.3.5 Expression of ACC Synthase and ACC Oxidase Genes in Before and After Treatment 68
3.4 Conclusion 71

4 EFFICACY OF 1-MCP ON CONTROLLING OF ETHYLENE SENSITIVITY AND EXTENDING VASE LIFE OF SENSITIVE AND LESS SENSITIVE CUT ORCHID FLOWERS 72
4.1 Introduction 72
4.2 Materials and Methods 75
4.2.1 Plant material 75
4.2.2 Weight loss 76
4.2.3 Vase life 76
4.2.4 Bud opening 76
4.2.5 Measurement of ethylene production 76
4.2.6 Experimental design and data analysis 77
4.3 Results and discussion 77
4.3.1 Weight loss 77
4.3.2 Vase life 83
4.3.3 Bud opening 89
4.4 Conclusion 92

5 RESPONSES OF DENDROBIUM ‘DARRENN GLORY’ AND
MOKARA ‘CALYSPO JUMBO’ TO 1-MCP AND AQUEOUS
OZONE POSTHARVEST TREATMENTS 94
5.1 Introduction 94
5.2 Materials and Methods 97
 5.2.1 Materials and treatment for preliminary experiment (to
determine the effective concentration of aqueous ozone
as anti microbes) 97
 5.2.2 Material and treatments for main experiment [responses
of Dendrobium ‘Darren Glory’ (DDG) and Mokara
‘Calypso Jumbo’ (MCJ) to 1- MCP and aqueous ozone
postharvest treatments] 98
 5.2.3 Microbial culture in preliminary experiment 99
 5.2.4 Measurement of ethylene production (main experiment) 99
 5.2.5 Measurement of bud opening (main experiment) 100
 5.2.6 Vase life (main experiment) 100
 5.2.7 ACC content (main experiment) 100
 5.2.8 Measurement of ACC oxidase activity (main
experiment) 101
 5.2.9 Scanning electron microscopy (main experiment) 102
 5.2.10 Identification of the predominant bacteria 102
 5.2.10.1 Sample isolation 102
 5.2.10.2 DNA extraction using QIAamp DNA mini Kit 103
 5.2.10.3 Amplification of the intergenic region of the
16S-23S rDNA 104
 5.2.10.4 Sequencing of the intergenic region of the
16S-23S rDNA and the insertion sequence
element, IS1113 105

XX
5.2.11 Experimental design and data analysis

5.3 Results and discussion

5.3.1 Number of colony for bacteria, fungi and yeast

5.3.2 Ethylene production

5.3.3 Vase life

5.3.4 Bud opening

5.3.5 Scanning electron microscopy

5.3.6 Detection of Burkholderia sp. in vase water of cut orchid hybrid (DDG)

5.4 Conclusions

6 REESPONSE OF MOKARA ‘CALYPSO JUMBO’ TO DIFFERENT LEVELS OF 1-MCP AND AQUEOUS OZONE POSTHARVEST TREATMENTS

6.1 Introduction

6.2 Materials and Methods

6.2.1 Measurement of fresh weight

6.2.2 Measurement of water uptake

6.2.3 Measurement of bud /floret abscission

6.2.4 Measurement of Bud Opening

6.2.5 Measurement of Epinasty degree

6.2.6 Measurement of Senescence symptoms

6.2.7 ACC content in buds/florets

6.2.8 Measurement of ACC oxidase activity in buds/florets

6.2.9 Measurement of ethylene production

6.2.10 Vase life

6.2.11 Bacteria growth in stem

6.2.12 Scanning electron microscopy

6.2.13 Experimental design and data analysis

6.3 Results and Discussions

6.3.1 Fresh weight (%)

6.3.2 Water uptake

6.3.3 Buds and Florets Abscission

6.3.4 Epinasty and Senescence Symptoms

6.3.5 ACC content and ACC oxidase activity

6.3.6 Ethylene production in the inflorescences

6.3.7 Bud opening and Vase life

6.3.8 Bacterial growth in stem