UNIVERSITI PUTRA MALAYSIA

LIPASE-CATALYSED SYNTHESIS AND OPTIMIZATION OF BIOLOGICALLY ACTIVE AMIDES OF CINNAMIC ACID DERIVATIVES

MOHAMMAD HESHAM ABDELRAHMAN ABU ALRUB

FS 2013 23
LIPASE-CATALYSED SYNTHESIS AND OPTIMIZATION OF BIOLOGICALLY ACTIVE AMIDES OF CINNAMIC ACID DERIVATIVES

By

MOHAMMAD HESHAM ABDELRAHMAN ABU ALRUB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright’ Universiti Putra Malaysia
LIPASE-CATALYSED SYNTHESIS AND OPTIMIZATION OF BIOLOGICALLY ACTIVE AMIDES OF CINNAMIC ACID DERIVATIVES

By

MOHAMMAD HESHAM ABDELRAHMAN ABU ALRUB

July 2013

Chair: Professor Mahiran Basri, PhD
Faculty: Science

Natural products compounds are very important source of materials for the pharmaceutical industry. Amides are in general present in natural products. Amides play an essential role in virtually all biological processes such as enzymatic catalysis and medical chemistry. Natural products which contain amide group play an important role in modern drug discovery, especially in cancer treatment. The extracts from Litsea plants have been reported to have significant cytotoxic activity against human tumor cells. The compounds which are the major components of Litsea plants are so valuable and important to be synthesized and studied. Litsea plant consists of many cinnamic acid amides. There are no suggested methods for the synthesis of N-trans-sinapoylmethoxytyramine and N-trans-sinapoyldimethoxytyramine. The compounds N-trans-feruloylmethoxytyramine, N-trans-sinapoyltyramine and N-trans-feruloyldimethoxytyramine have only one method for synthesis with a low yield. N-trans-feruloyltyramine needs hydrazine as a reagent which is very
dangerous. The extraction method gives very low yield and the process is not economic. Thus, it is important to find a new direct method to synthesize these compounds. Six cinnamic acid amides derivatives were successfully synthesized from the reaction of cinnamic acids with tyramine derivatives in a one-step lipase-catalyzed reaction. The use of immobilized lipase, Lipozyme TL IM as the catalyst in the reaction provides an easy isolation of the enzyme from the products and other components in the reaction mixture.

All the amides were characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) and carbon-13 (13C NMR) techniques. The optimized percentage yield obtained was 93.5% when the process was carried out for 48 h, at molar ratio of tyramine HCl: cinnamic acid - 1:6 at 40 °C.

Enzymatic synthesis of N-trans-feruloyltyramine was optimized by Response Surface Methodology (RSM) using 4-hydroxy-3-methoxycinnamic acid and tyramine hydrochloride in a one-step lipase catalyzed reaction using Lipozyme TL IM. RSM based on five-level, four-variable central composite rotatable design (CCRD) was used to evaluate the interactive synthesis with variables consisting of reaction time (24-96 h), temperature (30-50 °C), amount of enzyme (2.5-25 mg/mL) and substrate molar ratio [cinnamic acid:tyramine HCl, (1:1 - 8:1 mmol)] on the percentage yield of N-trans-feruloyltyramine. The optimum conditions derived via RSM were; reaction time, 52 h, temperature, 43 °C, amount of enzyme, 13 mg/mL and substrate molar ratio (cinnamic acid:tyramine HCl) 6.2:1. The actual
experimental yield was 96.3 % under the optimum condition, which compared well to the maximum predicted value of 97.2 %.

The anticancer activities for all compounds were evaluated against human colorectal (HT-29), human estrogen-receptor positive breast cancer (MCF-7), human estrogen-receptor negative breast cancer (MDA-MB-231) and human hepatocellular carcinoma (HepG2) cell lines. It can be concluded that all the amides normalized the rate of cell growth.

The antibacterial properties of the synthesized amide compounds were evaluated on gram negative bacteria, gram positive bacteria and yeast. It was found that all synthesized amides inhibited the growth of the tested bacteria and yeasts with good zone diameter. N-trans-Sinapoyldimethoxytyramine inhibited the growth of the tested gram negative with 24 mm zone. N-trans-Sinapoyltyramine inhibited the growth of the tested gram positive MRSA and yeast CA with 30 mm and 40 mm zone, respectively against the corresponding microorganisms.

Antioxidant activities were studied for all the compounds using DPPH and ATBS methods. In both methods, all compounds showed potential activity. N-trans-sinapoylmethoxytyramine showed the highest effective activity for all the compounds. DPPH Inhibition Ratio (%) was at 69.2 % and ABTS Inhibition Ratio (%) at 79.6 %. In addition, N-trans-feruloyldimethoxytyramine showed relatively lower activity with DPPH Inhibition Ratio (%) at 59.4 % and ABTS Inhibition Ratio (%) at 72.0 %. However, these results are considered as good antioxidant activity.
Kinetic study using Lipozyme TL IM in the amidation of cinnamic acid with tyramine HCl was carried out. The effect of both substrates on the initial reaction rate was studied. The initial rates of the reaction were calculated and the results showed that the amidation reaction obeyed the Ping-Pong Bi-Bi mechanism. Lineweaver-Burk plots of amidation reaction were determined. The kinetic constants of reaction were studied whereby V_{max} (mmol/L/min) was 0.0328 and K_m (CA) (mmol/L) was 0.8955.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi syarat untuk mendapatkan ijazah Doktor Falsafah

SINTESIS BERMANGKIN-LIPASE DAN PENGOPTIMUMAN TERBITAN AMIDA ASID SINAMIK AKTIF DARI SEGI BIOLOGI

Oleh

MOHAMMAD HESHAM ABDELRAHMAN ABU ALRUB

Julai 2013

Pengerusi: Professor Mahiran Basri, PhD

Fakulti: Sains

Enam asid sinamik amida terbitan telah berjaya dihasilkan daripada tindak balas asid sinamik dengan tiramin terbitan dalam satu langkah tindak balas pemangkinan lipase. Penggunaan lipase yang telah dipegunkan, Lipozyme TL IM sebagai pemangkin dalam tindak balas menyediakan pengasingan mudah enzim daripada produk dan komponen lain dalam campuran tindak balas.

Semua amida telah dicirikan menggunakan spektroskopi infra merah transformasi Fourier (FTIR). Proton resonan magnetik nuklear (\(^1\)H-NMR) dan teknik karbon -13 (\(^{13}\)C- NMR). Peratusan optimum yang diperolehi ialah 93.5 % apabila proses telah dijalankan selama 48 jam, pada nisbah molar tiramin HCl:asid sinamik – 1:6 dan suhu 60 °C.

Tindakan enzim terhadap N-trans-feruloiltiramin telah di optimumkan oleh Kaedah Respon Permukaan (RSM) menggunakan asid 4-hidroksi-3-metoksisinamik dan tiramin hidroklorik di dalam satu langkah tindak balas pemangkinan lipase menggunakan Lipozyme TL IM.
RSM berdasarkan lima-peringkat, empat-faktor rekaan pusat komposit berputar (CCRD) telah digunakan untuk mengkaji interaktif sintesis dengan pemalar seperti masa tindak balas (24 – 96) h, suhu (30 – 50) °C, jumlah enzim (2.5-25 mg/mL) dan nisbah molar substrat (asid sinamik : tiramin HCl = 1:1- 8:1) mmol, terhadap peratusan hasil N-trans-feruloiltiramine. Keadaan optimum dihasilkan melalui RSM adalah; masa tindakbalas 52 h, suhu 43 °C, jumlah enzim 13.0 mg/mL dan nisbah molar substrat (asid sinamik:tiramin HCl= 6.2:1). Peratusan sebenar hasil kajian ialah 96.3 % di bawah keadaan optimum, telah dibandingkan sesuai dengan nilai anggaran maksimum iaitu 97.2 %.

Aktiviti anti kanser untuk semua sebatian telah ditentukan terhadap kolorekral (HT-39), estrogen manusia-reseptor positif kanser payudara (MCF-7), estrogen manusia-reseptor negatif kanser payudara (MDA-MB-231) dan sel hepatoselular karsinoma manusia (HepG2). Kesimpulan dapat dibuat bahawa kesemua amida menormalkan kadar pertumbuhan sel.

Ciri-ciri antibakteria sebatian amida yang disintesis dinilai berdasarkan bakteria gram negatif, bakteria gram positif dan yis. Didapati bahawa semua amida yang disintesis menghalang pertumbuhan bakteria yang diuji dan yis dengan garis pusat zon yang baik. N-trans-Sinapoidimetoksitiramin menghalang pertumbuhan gram negatif yang diuji dengan zon 24 mm. N-trans-sinopoiltiramin menghalang pertumbuhan MRSA gram positif dan yis CA diuji dengan zon 30 mm dan 40 mm, masing-masing, terhadap mikroorganisma yang diuji.
Aktiviti antioksida telah dikaji untuk semua sebatian menggunakan kaedah DPPH dan ATBS. Dalam kedua-dua kaedah tersebut, semua sebatian menunjukkan potensi aktiviti. N-trans-sinapolmetoksitiramin menunjukkan aktiviti berkesan tertinggi untuk semua kompaun. Nisbah Perencatan DPPH (%) berada pada 69.2 % dan Nisbah Perencatan ABTS (%) pada 79.6 %. Di samping itu, N-trans-feruloidimetoksitiramin menunjukkan aktiviti yang lebih rendah dengan Nisbah Perencatan DPPH (%) pada 59.4 % dan Nisbah Perencatan ABTS (%) pada 72.0 %.

Walau bagaimanapun, keputusan ini dianggap sebagai aktiviti antioksida yang baik.

Kajian kinetik menggunakan Lipozyme TL IM dalam amidasi asid sinamik dengan tiramin HCl telah dijalankan. Kesedua-dua substrat ke atas kadar tindak balas awal telah dikaji. Kadar awal tindak balas telah dikira dan keputusan menunjukkan bahawa tindak balas amidasi itu menuruti mekanisma Ping-Pong Bi-Bi. Plot Lineweaver-Burk bagi tindakbalas amidasi telah ditentukan dimana V_{max} (mmol/L/min) adalah 0.0328 dan K_m (CA) (mmol/L) adalah 0.8955.
ACKNOWLEDGEMENTS

First of all, I thanked ALLAH the almighty for best owing upon me this incredible journey toward getting my PhD degree.

I would like to express my appreciation to my supervisor, Professor Dr. Mahiran Basri, for her guidance, advice, continuous support, patient and encouragement through my PhD program. I would like to thank Professor Dr. Abu Bakar Salleh for guiding me through the course of this program. Further thanks to my supervisory committee members Dr Emilia Abd Malek and Dr Shahrul Ainliah for their assistance and advice in my research.

I would like to thank Dr Mohamed Ezzat El Zowalaty, Lecturer, Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt, who is currently a postdoctoral research fellow through scholarship from Ministry of Higher Education, Malaysia at laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, for helping me in performing the antimicrobial activity. Special thanks to Dr Norzalina from the Institute of Bioscience (IBS) for her assistance in the analysis of the cytotoxic activity of the compounds.

Thanks are extended to all my lab-mates in Lab 105 and Lab 401. Thank you for making my stay a tolerable one, with many sweet memories. In addition, I would like to thank staff of Department of Chemistry, Faculty of Science for their help and cooperation during my experimental work.
Special thanks to my family, mom, dad, brothers and my sister for their love, patient and support that they have given me. Without them I would never have succeeded in my academic study.

I am so grateful to my wife, Fatima for always standing by me in my work and for her patience and support in happiness and sorrow. To my dearest twin daughters, Retaj & Retal. And also to my new baby Aya. I would like to express my deepest affection and love.
I certify that a Thesis Examination Committee has met on the 8 July 2013 to conduct the final examination of Mohammad Hesham Abdelrahman Abu Alrub on his thesis entitled "Lipase-Catalysed Synthesis and Optimization of Biologically Active Amides of Cinnamic Acid Derivatives" in accordance the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd Zobir Hussein, PhD
Professor
Institute of Advanced Technology
Universiti Putra Malaysia
(Chairman)

Mohd Aspollah bin Hj Md Sukari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mansor bin Hj Ahmad @Ayob, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

K. B. Ramachandran, PhD
Professor
Indian Institute of Technology Madras
India
(External Examiner)

NORITAH OMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 August 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mahiran Basri, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Emilia Abd Malek, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Shahrul Ainliah Alang Ahmad, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHAMMAD HESHAM ABDELRAHMAN ABUALRUB

Date: 8 JULY 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>xxvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2.1 Background 1
2.2 Problem Statements 3
2.3 Objectives 4

2 LITERATURE REVIEW

2.1 Cinnamic Acid Amides 5
2.2 Preparation of Cinnamic Acid Amides 5
2.2.1 N-trans-feruloyltyramineamine (1) 6
2.2.2 N-trans-feruloylmethoxytyramine (2) 7
2.2.3 N-trans-sinapoyltyramine (3) 8
2.2.4 N-trans-sinapoylmethoxytyramine (4) 9
2.2.5 N-trans-feruloyldimethoxytyramine (5) 9
2.2.6 N-trans-sinapoyldimethoxytyramine (6) 10
2.3 Biological Activities of Cinnamic Acid Amides 11
2.4 Enzymes 12
2.5 Enzymes in Organic Synthesis 13
2.6 Lipases 14
2.7 Sources of Lipases 15
2.8 Applications of Lipases 15
2.9 Mechanism of Action 17
2.10 Lipases in Organic Solvents 17
2.11 Lipase-Catalyzed Amidation Reactions 19
2.12 Response Surface Methodology (RSM) 20
2.13 Kinetics Study of Enzyme-Catalyzed Amidation Reaction 21
2.13.1 Substrate Concentration 21
2.13.2 Kinetic Mechanism 22
2.14 Cancer 24
2.15 Cancer Cell Lines 24
2.16 Free Radicals 24
2.17 Cytotoxic Activity (IC$_{50}$) 25
2.18 Antioxidant Activity 26
 2.18.1 DPPH Scavenging Activity 26
 2.18.2 ABTS Scavenging Activity 26

3 MATERIALS AND METHODS 27
 3.1 Chemicals and Materials 27
 3.2 Synthesis of Cinnamic Acid Amides (General procedure) 28
 3.2.1 N-trans-feruloyltyramineamine (1) 30
 3.2.2 N-trans-feruloylmethoxytyramine (2) 30
 3.2.3 N-trans-sinapoyltyramine (3) 31
 3.2.4 N-trans-sinapoylmethoxytyramine (4) 31
 3.2.5 N-trans-feruloyldimethoxytyramine (5) 32
 3.2.6 N-trans-sinapoyldimethoxytyramine (6) 32
 3.3 Development of HPLC Method for Quantitive Analysis 33
 3.4 Preparation of Standards Calibration Curves and Samples 33
 3.5 Optimization of the Best Conditions for Reaction Synthesis 34
 3.5.1 The Effect of Organic Solvents 34
 3.5.2 The Effect of Enzyme Type 34
 3.5.3 The Effect of Reaction Time and Temperature 35
 3.5.4 The Effect of Enzyme Amount 35
 3.5.5 The Effect of Molar Ratio 35
 3.6 Modeling and Optimization of N-trans-feruloyltyramine (1) 35
 Synthesis using Response Surface Methodology (RSM)
 3.6.1 Experimental Design and Statistical Analysis 36
 3.7 Kinetic Study 36
 3.7.1 Effect of Cinnamic Acid Concentration 37
 3.7.2 Effect of Tyramine HCl Concentration 37
 3.7.3 Kinetic Constant Determination 39
 3.8 Biological Activity Studies 39
 3.8.1 Cell cytotoxicity Assay (MTT Assay-Anticancer) 39
 3.8.2 Antimicrobial Activity 40
 3.8.2.1 Culture Media: 40
 3.8.2.2 Microorganisms and Growth Conditions 40
 3.8.2.3 Agar Diffusion Method 41
 3.8.3 Antioxidant Activity 42
 3.8.3.1 DPPH Method 42
 3.8.3.2 ABTS Method 42

4 RESULTS AND DISCUSSION 43
 4.1 Synthesis of Cinnamic Acid Amides 43
 4.2 Analysis of Cinnamic Acids Amides 44

xvi
4.2.1 Spectroscopic Analysis of \(N\text{-trans-} \) feruloylmethoxytyramine (1) 44
4.2.2 Spectroscopic Analysis of \(N\text{-trans-} \) feruloylmethoxytyramine (2) 50
4.2.3 Spectroscopic Analysis of \(N\text{-trans-} \) sinapoyltyramine (3) 54
4.2.4 Spectroscopic Analysis of \(N\text{-trans-} \) sinapoylmethoxytyramine (4) 58
4.2.5 Spectroscopic Analysis of \(N\text{-trans-} \) feruloyldimethoxytyramine (5) 62
4.2.6 Spectroscopic Analysis of \(N\text{-trans-} \) sinapoyldimethoxytyramine (6) 66

4.3 HPLC Method for Analysis 70
4.3.1 Calibration Curve for \(N\text{-trans-} \) feruloyltyramine (1) 71

4.4 Optimization of the Synthesis Reaction 72
4.4.1 The Effect of Organic Solvents 72
4.4.2 The Effect of Enzyme Type 72
4.4.3 The Effect of Reaction Time and Temperature 75
4.4.4 The Effect of Enzyme Amount 75
4.4.5 The Effect of Molar Ratio (Cinnamic Acid/Tyramine HCl) 78

4.5 Modeling and Optimization of \(N\text{-trans-} \) feruloyltyramine Enzymatic Synthesis using Response Surface Methodology (RSM) 79
4.5.1 Model Fitting and Statistical Analysis 81
4.5.2 The Response Surface Plots 83
4.5.3 The Yield of \(N\text{-trans-} \) feruloyltyramine versus Reaction Time and Reaction temperature 84
4.5.4 The Yield of \(N\text{-trans-} \) feruloyltyramine versus Reaction Time and Amount of Enzyme 84
4.5.5 The Yield of \(N\text{-trans-} \) feruloyltyramine versus Reaction Time and Molar Ratio 87
4.5.6 The Yield of \(N\text{-trans-} \) feruloyltyramine versus Reaction Temperature and Amount of Enzyme 87
4.5.7 The Yield of \(N\text{-trans-} \) feruloyltyramine versus Substrate Molar Ratio and Reaction Temperature 90
4.5.8 The Yield of \(N\text{-trans-} \) feruloyltyramine versus Substrate Molar Ratio and Amount of Enzyme 90

4.6 Reaction the Optimum Conditions 93

4.7 Reaction of Other Cinnamic Acid Amides using the Optimized Conditions 94

4.8 Kinetic Study of the Lipase-Catalyzed Synthesis of \(N\text{-trans-} \) feruloyltyramine 96
4.8.1 Effect of 4-hydroxy-3-methoxycinnamic Concentration to Initial Rate 96
4.8.2 Effect of Tyramine HCl Concentration to Initial Rate 98
4.8.3 Lineweaver-Burk plot of Amidation Reaction 98
4.8.4 Kinetic Constant 101

4.9 Cytotoxic Activity MTT Assay 102
4.10 Antimicrobial Activity 105
4.11 Antioxidant Activity
 4.11.1 DPPH 107
 4.11.2 ABTS 108

5 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 113
 5.1 Conclusion 113
 5.2 Recommendations for Future Research 116

REFERENCES 117
APPENDICES 124
BIODATA OF STUDENT 140
LIST OF PUBLICATIONS 141