
Pertanika J. Sci. & Techno!. 13(1): I - 21 (2005)
ISSN: 0128-7680

© Universiti Putra Malaysia Press

Developing Translation Rules for Converting Relational
to Object Oriented Database Conceptual Schema

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda
Department of Computer Science

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

43400 UPM, Serdang, Selangor, Malaysia
E-mail: hamidah@fsktm.upm.edu.my

Received: 27 November 2001

ABSTRAK

Pangkalan data multi adalah satu persekutuan sistem pangkafan data teragih,
heterogen dan berotonomi yang telah ujud. Kebiasaannya, proses integrasi
adalah perlu dalam usaha membentuk satu sistem pangkalan data teragih yang
heterogen. Proses ini secara amnya mengandungi dua fasa utama, iaitu fasa
penterjemahan skema konseptual diikuti dengan fasa integrasi. Makalah ini
mempersembahkan satu pendekatan penterjemahan untuk menukar skema
pangkalan data hubungan kepada skema pangkalan data berorientasi objek.
Pendekatan penterjemahan tersebut mengandungi satu set peraturan
penterjemahan, yang berdasarkan kepada kebergantungan terangkum, atribut
kunci dan jenis atribut. Satu prototaip alat penterjemahan skema pangkalan
data, dipanggil RETOO dibangunkan berdasarkan kepada pendekatan
penterjemahan yang dicadangkan. RETOO menerima skema pangkalan data
hubungan sebagai data input dan menjana skema pangkalan data berorientasi
objek sebagai output. Pendekatan penterjemahan bukan sahaja dapat
memelihara semantik skema pangkalan data hubungan tersebut, tetapi juga
meningkatkan semantik skema berorientasi objek yang diterjemahkan melalui
konse(f permodelan data berorientasi objek.

ABSTRACT

A multidatabase is a confederation of pre-existing distributed, heterogeneous,
and autonomous database system. Obviously, the integration process is essential
in the effort of forming a distributed, heterogeneous database system. This
process generally consists of two main phases, which are conceptual schema
translation phase followed by the integration phase. This paper presents a
translation approach to convert relational database schema to object-oriented
database schema. The translation approach consists of a set of translation rules,
which is based on inclusion dependencies, key attributes and types of attributes.
A database schema translation tool prototype, called RETOO (RElational-To­
Object-Qriented) is then developed based on the proposed translation approach.
RETOO receives a relational database schema as input data and generates an
object-oriented database schema as the output. The translation approach is not
only able to maintain the semantics of the relational database schema, but also
enhance the semantics of the translated object-oriented schema via object­
oriented data modeling concepts.

Keywords: Relational schema, object-oriented schema

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda

INTRODUCTION

In today's information age, databases and database technology are having a
major impact on the growing use of computers. The government, education,
medicine, engineering, business and other areas have computerized all or part
of their daily functions. Undoubtedly, these computerization processes often
include database systems to model and store the information of the real-world
entities involved in these functions. The computing environment in most of
these contemporary organizations contains distributed, heterogeneous, and
autonomous hardware and software systems. Therefore, there is an increasing
need to support the co-operations of the services provided by these different
software and hardware.

The existence of multiple, heterogeneous and autonomous databases within
an organization means the globally important information exists in separate
local database management systems (DBMSs), thus making the existing data
inaccessible to remote users. One solution is to integrate these databases to
form a single cohesive definition of a multi-database. Most of the integration is
made possible with the support of database translation, which is the task of
translation from one database conceptual schema into another.

Most works on schema translation deal with conversion from the entity­
relationship (ER) model to the relational model or some extension of it
(Castellanos et al. 1994; Castellanos and Saltor 1991). There are many works on
translation from ER model into relational model or vice versa (Huang et al.
1997; Lukovic and Mogin 1996; SeoI1997). Besides, works on general frameworks
for schema translation were also carried out (McBrien and Poulovassilis 1998).

evertheless, only a few works have been done on translating relational
schema into object-oriented (00) schema (Castellanos et al. 1994; Castellanos
and Saltor 1991; Fong 1997; Soon et al. 2001; Stanisic 1999). Stanisic (1999)
focused his work not only on schema translation, but query translation as well.
While Castellanos et al. (1994) proposed a methodology to translate the
relational model into Barcelona Object-Oriented Model, namely BLOOM
model. However, these works have their limitations respectively, especially in
terms of translated 00 model representation. The limitations in the BLOOM
00 model include (i) the syntax of resulted BLOOM 00 model is not easy to
understand, such as the keywords s_aggre~of and compl~eneraliz_of; (ii) the
model tends to create extra classes, which are sometimes not necessary; and
(iii) the data types of attributes in BLOOM 00 model are not specified.

In our work, a set of translation rules is proposed to translate relational
database conceptual schema into 00 database conceptual schema. This set of
translation rules is applied in a database schema translation tool prototype,
called RETOO (RElational-To-Object-Oriented), with the assumption that 00
conceptual schema is used as the canonical conceptual schema (CCS). This
canonical conceptual schema will then be integrated into the global conceptual
schema (GCS) of the distributed, heterogeneous database system. Fig. 1 briefly
illustrates the system. InS] ... InS

n
shown in Fig. 1 are intermediate schemas or

known as canonical conceptual schemas.

2 PertanikaJ. Sci. & Techno\. Vo\. 13 o. 1,2005

Developing Translation Rules for Converting Relational to Object Oriented Database Conceptual Schema

Database n)Relational
Database

RETOO
Database Schema
Translation Tool

Database 1

Object-orientedC InSJ~ Database as CCS

~/

Fig. 1: Relational-to-object-onented database schema translation tool

PRELIMINARIES

In our work, the relational conceptual schema and object-oriented conceptual
schema are represented in the format as shown in Fig. 2 and Fig. 3, respectively.

S, T and U are the names of the relations while sJ to sn' tJ to t; and u J to u;
are the attributes of relations S, T and U respectively. DS

J
to Ds

n
, Dt/ to Dt; and

Du/ to Du; are the data types (domain) associated with each attribute while the
underlined attribute is the primary key. Note that relations S, T and U might
have a primary key, k, which is defined over more than one attribute of these
relations.

In Fig. 3, S, T, U, V, vv, X and Yare the names of the classes. The interactions
among classes are shown by keywords inherit, inherited_lJy, assemble, participate_in,
depend, has_dependent, set() and inverse is. Every class has its attributes and
methods or operations.

T(11: Dth

t1: Dt1,

tJ: DtJ

Fig. 2: Examples oj the Jormat oj relational conceptual schema

PertanikaJ. Sci. & Techno!. Vo!. 13 o. 1,2005 3

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda

class S
inherit T
participate_ill U
depend V

Attributes
Sl : string;
S2: set (W);
S3: X,XI;

S4: set(y) Inverse Is Y'YI;

sm: string;

Methods
Create(...);

end S.

classU
assemble S

Attributes
u.: char;
Uz: set (W);

Methods
Create();
Destroy();

endU.

classW
Attributes

WI: char;
W2: char;

Methods
Create(...);

endW.

Fig. 3: Object-oriented conceptual schema

The format of the 00 schema is modified from the standard object­
oriented database schema to a more easy-to-understand format. As can be seen
in Fig. 3, the first part of the schema is the declaration of the beginning of a
class, which is class S. This is followed by the declaration part for the inheritance
(inherit) and aggregation (assemble and depend) of the class. The word depend
shows the way of presenting weak entity type in 00 data modelling. Even
though relationship between the weak entity and its parent entity is considered
as a kind of aggregation, the keyword depend is used for the purpose of better
understanding. All these three keywords have their own inverse versions, which
are inherited_fry, participate_in and has_dependent.

In this example, we have other six classes, namely T, U, V, vv, X and Y. Class
S inherits from class T, aggregated by class U and is the dependent of class V.
In other words, class S is-an instance of class T and is part of the aggregation
of class U. Class V is the parent entity of weak entity S. In contrast, these inverse
classes will have the inverse versions of the keywords, for example in class U, it
has assemble S.

Another keyword in the schema, i.e. set is used when attribute's type is a set
of attributes. In Fig. 3, S2 consists of a set of attributes from class W otice that
there is an attribute, which is S3 with the data type of X.x

I
' this means the

attribute is 'mapped' from attribute XI of class X. Besides these, the keyword

4 PertanikaJ. Sci. & Techno!. Vol. 13 o. 1,2005

•

Developing Translation Rules for Converting Relational to Object Oriented Database Conceptual Schema

class Account
Attributes

name, acc_number: String;
Methods

CreateO;
Deposit(amount: Money);
Withdraw(amount: Money)

end Account.

Fig. 4: Class with extra methods

inverse is is used to specify the interaction between classes. Attribute S4 in class
S corresponds with the attribute y10f class Y. Hence, the integrity constraints are
clearly shown in this schema.

Followed subsequently is the declaration of the operations in the class with
the heading Methods. One of the most common method for classes is the
creator, which will create instances of that class. However, some classes might
have other methods representing their behavior, as shown in Fig. 4. Finally, the
closing of class is done by using the keyword end.

RELATIONAL TO OBJECT-ORIENTED DATABASE
SCHEMA TRANSLATION APPROACH

The translation rules proposed by us are based on two characteristics of
database schema, they are: (i) inclusion dependency and (ii) key attributes and
types of attributes. Two phases are involved in translating relational to object­
oriented database conceptual schema, which are: (i) identifying classes and (ii)
identifying the operations. Both phases especially the second phase operate
semi-automatically, since the information regarding the behavior of each class
is not provided in the relational data model. To perform the translation process
we have identified ten translation rules which are based on the mapping and
normalization process in relational data modelling.

Identifjing Classes

To identify objects or classes, there are four steps as presented below.

Step 1: Translating Relation into Class

The first rule is:
Rule 1: If R is a relation with attributes ~, ~, A

n
,

then create a class R with attributes ~, ~, A
n

•

In this step all relations are formed into classes. Each class will have
attributes and types of attributes. Below is an example:

PertanikaJ. Sci. & Techno!. Vo!. 13 o. 1,2005 5

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda

Surgeon (Same
Street
City
Country
Phone- 0

String,
String,
String,
String,
String

String;
String;
String;
String;
String;

Mter translation from Step 1, we have class Surgeon as shown below:
class Surgeon

Attrilnttes
SName
Street
City
Country
Phone- 0

end Surgeon.

Step 2: IdentifYing Composite Attrilnttes

The general guideline to decide what an object is and what an attribute of an
object is lies in the theory of data abstraction. This theory states that something
should only be represented by a class if it represents a set of similar objects or
concepts with meaningful properties and operations, which are required to be
maintained by the system (Hughes 1991).

Composite attributes are attributes that can be divided into smaller subparts,
which represent more basic attributes with independent meanings of their own
(Elmasri 2003). Composite attributes represent a set of objects with meaningful
simple attributes. There are three cases to be considered, namely: relation that
consists of m composite attributes with (i) no overlapping attribute between the
composite attributes; (ii) at least two of the composite attributes have a
common attribute and (iii) at least one of the composite attribute consists of
attributes which are common to another composite attribute. Each case is
discussed below.

Case 1: No overlapping attrilntte between the composite attrilnttes.

The second translation rule is stated as:
Rule 2: If relation R consists of m composite attributes ~, where 1 ~ i ~ m

and~ = {Ail' A2' ...,An} with no overlapping attributes between
the ~, i.e. n m i• 1 ~ = { },

then - the attributes forming the composite attribute ~ are taken
out from class R, and are formed as a newly defined class, say
T

j
;

- in class R, attributes AI' A2' ..., An forming the composite
attribute ~ are replaced by statement RCAr' set(T), where
R~ is an attribute in class R referring to class T j •

6 PertanikaJ. Sci. & Technol. Vol. 13 o. 1,2005

Developing Translation Rules for Converting Relational to Object Oriented Database Conceptual &hema

Referring to the example in Step 1, there is a composite attribute Address,
which consists of three attributes, namely: Street, City, and Country. As a result,
these three attributes are taken out from the class Surgeon and formed as
another class Address, as shown below:

class Address
Attributes

Street, City, Country String;
end Address.
class Surgeon

Attributes
Same
SAddress
Phone-No

end Surgeon.

String;
set(Address) ;
String;

String,
String,
String,
String,
String

In 0

FName
MInit
Lame
Phone- 0

If there exists the same non-key composite attributes in another relation,
redundancies can be solved by referring to the same new class formed.

To illustrate cases 2 and 3, let say we have a relation with attributes as
follows:

Surgeon (

Case 2: At least two of the composite attributes have a common attribute.

The third translation rule is stated as:
Rule 3: If relation R consists of a composite attribute~ with attributes {AI'

A
2

, ••• , A } and another composite attribute CA with attributes
I In J

{AI' A
2

, ••• , A }, and there exists at least an attribute in CA, say
J J Jrn J

A
k

, which exists in both CA and CA,!
J 1 J

then - the attributes forming ~ are taken out from class R and
formed as a newly defined class, say T

j
;

the attributes forming CA are also taken out from class R and
J

formed as another newly defined class, say T.;
J

- in class Tj , attribute ~k is defined as A
j
.: Tj"A

j
.;

in class R, attributes AI' Ai2, ••• , An are replaced by statement
RCA,: set(T), representing composite attribute ~;

- similarly, statement RCAi set(T) is used to replace attributes AI'
~2' ••. , ~rn' representing composite attribute ~. J

And if there is an attribute in CA., say AI which is a simple attribute by itself, then in class T.,
attribute ~, is defined as AiRA; Jand a~tribute ~I will remain in class R. J

PertanikaJ. Sci. & Techno!. Vo!. 13 No.1, 2005 7

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda

Let's assume that there are two composite attributes in this relation, which
are:

• arne:
• Staff_ 0:

F arne, MInit, LName
FNarne, Phone- 0

In this case, we have an attribute FName that exists in both composite
attributes Name and Staff_No. The attributes that form these composite attributes
will be taken out from the original relation and formed as classes, same as the
simpler case discussed earlier. Therefore, after the translation process, we will
get the following three classes:

class Name
Attributes

FName, MInit, LName String;
end Name.
class Staff_No

Attributes
FNarne
Phone-No

end Staff_No.
class Surgeon

Attributes
ID_ 0

S arne
Staff_ 0

end Surgeon.

Name.FName;
String;

String;
set(Name);
set(StafC 0);

Case 3: At least one of the composite attributes consists of attributes which are common
to another composite attribute.

The fourth translation rule is stated as:
Rule 4: IF relation R has a composite attribute CA = {AI' A

2
, ••• , A } and

'j I I I In

another composite attribute CA = {AI' A 2, ••• , A } where CA C
J J J Jm J

CA (CA is a subset of CA),
I J I

then - the attributes ~1' ~2' ••• , ~n forming G\ are taken out from
class R and formed as a newly defined class, say T j ;

- the attributes AI' A 2, .•• , A forming CA are also taken out
J ~<. Jm J

and formed as another newly defined class, say T
j
;

- in class Tj' attr~bute ~k where 1 ~ k ~ m is defined as AjI': TCAjk;

- in class R, attnbutes ~l' ~2' ••• , ~n are replaced by statement
RCA

j
: set(T) representing composite attribute G\;

- in class R, statement RCA/ set(T) is used to represent composite
attribute CA.

J

In this case, let's assume that we have another two sets of composite
attributes in the sarne relation Surgeon.

• Full_ arne: FNarne, Mlnit, L arne
• arne: F arne, L arne

8 PertanikaJ. Sci. & Techno\. Vo\. 13 o. 1,2005

Full_Name.FNarne;
Full_ arne.L arne;

Developing Translation Rules for Converting Relational to Object Oriented Database Conceptual Schema

Applying rule 4 will derive the following three classes:
class Full_ arne

Attributes
FNarne, MInit, L arne String;

end Full_Name.
class arne

Attributes
FName
LNarne

end Name.
class Surgeon

Attributes
ID_No
SFull_Narne :
SNarne
Phone- 0

end Surgeon.

String;
set(Full_ arne);
set(Name);
String;

Step 3: Identifying Relations with Foreign Keys only

In this step, we identify relations, which have only foreign keys. According to
the mapping process in relational data modelling, a relation will have only
foreign key attributes when the relation is formed as a result of an interaction
between or among other relations in M:N relationship. These foreign keys,
which originated from the key attributes of the relations involved in that
interaction will form the primary key of this newly formed relation.

Thus, when translating these relations, we will regard them as an object
resulting from the interaction between or arnong the classes that the foreign
key attributes refer to, as reflected in Rule 5:
Rule 5: If relation R consists of n attributes A" ~, ..., An where each A. is

the foreign key that refers to relations U
i
, where 1 $; i $; n,

then - class R is treated as interactions of all the classes {UI' U
2

, ••• ,

Un};
- in class U

i
, statements {R- set(U) inverse is UrR, R' set(UJ inverse

is U
2
.R, ... , R- set(U,) inverse is Un.R} - {R- set(U) inverse is ~.R)

are stated;
- class R is abolished.

The exarnple below illustrates this translation step.
Paper(P#, Title, Issue#

Institute_ arne, Vol#
Author(AName, Nationality

Date_oCBirth
Writes (P#, AName
ID: Writes.P# s Paper.P#
ID: Writes.ANarne s Author.AName

String,
String)
String,
Date)
String)

PertanikaJ. Sci. & Technol. Vol. 13 No.1, 2005 9

String;
String;
set(Author)
inverse is AuthoLwrite;

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda

The Writes relation consists of two foreign key attributes where P# refers to
the P# in relation Paper and ANameorefers to the AName in relation Author.
Therefore, the relation Writes is representing the interaction between relations
Paper and Author. Class Writes, which was formed in translation step 1 will be
abolished.

class Paper
Attrilmtes

P#, Title, Issue#
Institute_Name, Vol#
Written_by

end Paper.
class Author

Attrilmtes
AName, Nationality
Date_oCBirth
Write

end Author.

String;
Date;
set(Paper)
inverse is Paper.written_by;

Step 4: Identifying Foreign Keys and Candidate Keys Being Referenced

In this step, we shall focus on the referential integrity, which includes identifying
foreign keys and candidate keys being referenced. There are two possibilities
identified regarding the referential integrity, as shown in Table 1.

TABLE 1
Foreign key

Foreign Key

Key Attribute
Non-key Attribute

Candidate Key being Referenced

Key Attribute
Key Attribute

The first case (Case 1) occurs when both the foreign key and the candidate
key being referenced are key attributes in both relations. The second case (Case
2) occurs when the foreign key is a non-key attribute whereas the attribute
being referenced is a primary key attribute in the original relation.

Case 1: Both the foreign key and the candidate key being referenced are key attrilmtes in
both relations.

In this case, we can further divide it into four categories, as shown in Table 2.
Based on the definition of key constraint in relational modeling (Elmasri

2003), we know that when the key attribute of a relation ~ is a foreign key, it
implies that this relation refers to the whole relation ~ that contains the key
being referenced. Therefore, ~ is an instance of ~ whereby besides the

10 PertanikaJ. Sci. & Techno\. Vo\. 13 No.1, 2005

Developing Translation Rules for Converting Relational to Object Oriented Database Conceptual Schema

TABLE 2
Categories of case 1

Foreign Key Candidate Key being Referenced

Simple primary key
Composite primary key
Composite primary key

Part-Qf composite primary key

Simple primary key
Composite primary key

Simple primary key
Simple/Composite primary key

attributes in ~, R
1

has its own attributes. In 00 modelling, this situation is
similar to one of the 00 concepts, which is inheritance. A subclass is said to
be inherited from a superclass if the subclass "is-an" instance of the superclass.

For category one, if both the foreign key and the candidate key being
referenced are simple primary key attributes of the relations, our translation
rule will consider the foreign key's relation inherits from another being
referenced relation. This applies correctly even if both of the foreign key and
the key being referenced are composite primary keys, which is the second
category, as stated in Rule 6:
Rule 6: If both the foreign key in relation R and the candidate key being

referenced in relation V are simple primary key attributes or
composite primary keys,

then - class R is treated as an inheritance of class V;
- statement inherit V is included in class R;
- statement inherited_fry R is included in class V.

String,
String)

String)
arne

SName, Street, City
Country, Phone_No

Consultant(S arne, Speciality :
ID: Consultant.S arne ~ Surgeon. S

For exarnple, the SName attribute in Consultant is the foreign key, which
refers to the primary key of Surgeon. In this case, we can say that the Consultant
"is-a" Surgeon.

Surgeon (

String;

String;
set(Address) ;
String;

Consultant

end Surgeon.
class Consultant

inherit Surgeon
Attributes

Speciality
end Consultant.

Mter translation, we shall get the following 00 schema:
class Surgeon

inherited_fry
Attributes

SName
SAddress
Phone_ 0

PertanikaJ. Sci. & Techno!. Vo!. 13 o. 1,2005 11

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda

Category three indicates that there might exist a relation with more than
one foreign key and all the foreign keys formed the primary key of the relation.
Besides that, this relation also has its own attribute(s). If the subclass "is-an"
instance of both the superclasses, we will treat the relationships among the
relations as multiple inheritance. Based on this third category, we have the
following rule:
Rule 7: If relation R has a set of foreign keys Ifk

l
, ~, ... , fk

n
} where n > 1

and fk
j

where 1 ~ i ~ n formed the primary key of R, and after
being translated into class R, class R is an instance of the classes
CI, C2, ••• , Cmwhere its foreign keys are referred to, i.e. R.~ ~
C

j
.pk2, where pk is the primary key of C

i
,

then - class R is treated as an inheritance of classes C
l
, C

2
, ••• , Cm;

- in class R, statements inherit G
i
, where 1 ~ i ~ m are included;

- statements inherited_try R are included in classes C I' C2' ••• , Cm'

String,
String,
Integer)

For example, in a factory, it produces a Toy, which is a GommerciaLProduct and
at the same time, it is also a Gift for customer:

CommercialProduct(CommercialID
Packaging
Price

Gift (GiftID, Category String,
Coupon Integer)

Toy(CommercialID String,
GiftlD String,
Age Integer)

ID: Toy.CommercialID ~ CommercialProduct.CommercialID
ID: Toy.GiftID ~ Gift. GiftID

•

String;
String;
Integer;

String;
Integer;
String;

The Toy "is-a" GommerciaLProduct and also "is-a" Gift to the factory. As a result,
the three classes will be formed as below:

class CommercialProduct
inherited_try Toy
Attributes

CommercialID
Price
Packaging

end CommercialProduct.
class Gift

inherited_try Toy
Attributes

GiftID
Category
Coupon

end Gift.

The symbol \;;; shows the inclusion dependency.

12 PertanikaJ. Sci. & Techno!' Vo!. 13 o. 1,2005

String;
Date;

Developing Translation Rules for Converting Relational to Object Oriented Database Conceptual Schema

class Toy
inherit CommercialProduct
inherit Gift
Attributes

Age Integer;
end Toy.

However, not all relations that have foreign keys as primary key will be
considered as having multiple inheritance as presented in the following rule:
Rule 8: If relation R has a set of foreign keys {fk

l
, fk

2
, ••• , fk

n
! where n > 1

and fk
j

where 1 ~ i ~ n formed the primary key of R, and after
being translated into class R, class R is an aggregation of classes
C

l
, C

2
, ... , Cm where its foreign keys are referred to, i.e. Rfk

j
~

Cj'pk, where pk is the primary key of C
j
,

then - class R is treated as an aggregation of classes C
l
, C

2
, ... , Cm;

- statements assemble Cj where 1 ~ i ~ m are included in class R;
- statement participate_in R are included in classes C!' C

2
' ••• , Cm'

Refer to the example below:
Programmer(SSN, Salary, Sex String,

BDate Date)
Project(P#, P ame String,

StartDate, DueDate Date)
Works_On (SSN, P# String,

Hours Integer)
ID: Works_On.SSN ~ Programmer.SS
ID: Works_On.P# ~ Project. P#

In this case, Works_On is neither "is-a" Programmer nor "is-a" Project. Rather,
Works_On would be more suitable to be identified as an aggregation or
assembler of the two classes. If we refer back to the mapping process in
relational modeling, Works_On resulted from an interaction of M: relationship
of both Programmer and Project, in which the attribute Hours is an attribute
obtained from the relationship between Programmer and Project.

In terms of aggregation, the important point is that, user of Works_On does
not need to be concerned about the representation details of Programmer and
Project. All the properties of the Programmer and Project associated with a
particular Works_On are encapsulated by the class and may be accessed without
explicit joins (Hughes 1991).

Therefore, the translation result would be:
class Programmer

participate_in Works_On
Attributes

SS ,Salary, Sex
BDate

end Programmer.

PertanikaJ. Sci. & Techno!. Vo!. 13 o. 1,2005 13

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda

class Project
participate_in Works_On
Attrilmtes

P#, P ame
StartDate, DueDate

end Project.
class Works_On

assemble Programmer
assemble Project
Attrilmtes

Hours
end Works_On.

String;
Date;

Integer;

String)
String,
Integer)

Lastly, for the fourth category of this case, we identify another situation
whereby the foreign key is a part of primary key. The candidate keyes) being
referenced might be simple or composite primary key(s). According to the
mapping and normalization process in relational data modelling, this situation
happens when the relation that contains the foreign keyes) is a weak entity. The
key attribute of the parent entity is included as a foreign key in the weak entity
and will be part of the key attribute in the weak entity.

Thus, Rule 9 states that:
Rule 9. If part of the primary key of relation R is a foreign key attribute,

which refers to a relation Q,
then - class R is treated as a weak entity, which depends on class Q;

- statement depend Q is included in class R;
- statement has_dependent R is included in class Q.

An example is shown below, the class Children is a weak entity that depends
on its parent entity Employee.

Employee (SSN#, arne, Sex
Children (SS #, Child Name, Sex

Age
ID: Children.SSN# ~ Employee. SSN#

As a result, we will get the following two classes:
class Employee

has_dependent Children
Attrilmtes

SSN#, ame, Sex String;
end Employee.
class Children

depend Employee
Attrilmtes

Child_ ame, Sex
Age

end Children.

String;
Integer;

14 PertanikaJ. Sci. & Technol. Vol. 13 o. 1,2005

Developing Translation Rules for Converting Relational to Object Oriented Database Conceptual Schema

Case 2: The foreign key is a non-key attrilmte whereas the attrilmte being referenced is a
primary key attrilmte in the original relation.

In the third and fourth step of the mapping process in relational modelling, for
each regular binary 1:1 and 1: relationship type R, identify the relation S that
represents the participating entity type at the full participation or N-side of the
relationship type. Include as foreign key in S the primary key of the relation T
that represents the other entity type participating in R (Elmasri 2003).

Thus, the existence of the non-key attribute in relation S that refers to the
key attribute of relation T means that the foreign key in S is merely referring
to relation T and not an instance of relation T or even assembling relation T.
Thus, the existence of this foreign key as non-key attribute will be treated as an
interaction between Sand T.

We shall conclude our translation approach with Rule 10:
Rule 10: If relation R has a foreign key fk which is not a key attribute, that

refers to a relation P,
then - attribute fk shows the interaction between class R and class P;

- in class R, statement Jk: set(P) inverse is P.R replaces attribute
fk;

- in class P, statement R- set(R) inverse is RJk is included.

Below is an example demonstrating our approach:
Employee (SS , Sex String,

Salary, DeptNo String,
BDate Date)

Department(DeptNo, D arne, Location: String)
ID: Employee.DeptNo s Department.Dep 0

Mter being translated in this step:
class Employee

Attrilmtes
SSN, Sex, Salary
BDate
Work_in
inverse is Department.
Worked_by;

end Employee.
class Department

Attrilmtes
DeptNo, Dname
Location
Worked_by
inverse is E
mployee.Work_in;

end Department.

String;
Date;
set(Department)

String;
String;
set(Employee)

PertanikaJ. Sci. & Techno!. Va!. 13 o. 1,2005 15

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda

Identifying the operations

Operations that are applicable to a data abstraction are classified into three
categories: (i) constructor/destructor functions; (ii) accessor/query functions
and (iii) transformer/update functions. Since the information for the declaration
of operations for each object or relation is not provided in the relational data
model, user's information is very important in this phase. Initially, our approach
will suggest two operations for each class, which are the constructor and
destructor operations. Below is an example that shows these two basic operations
applied to a class:

class Hotel
Attributes

name, owner
location
manager

Methods
create ();
destroy ();

end Hotel.

String;
se t (Address) ;
String;

RESULTS AND DISCUSSION

In this section, we will compare the translation approaches proposed by
Castellanos et al. (1994), Stanisic (1999) and Fong (1997) with our translation
approach using two sets of relational database conceptual schema, as shown in
Fig. 5.

Castellanos et at. (1994) worked on translation from relational to object­
oriented model known as BLOOM 00 model. Their approach creates extra

Relational Schema 1:

employee~, dept, salary)
department(d name, location, budget)
ID:employee.dept!,;;; department.<Lname

Relational Schema 2:

Commercial_Product(CommercialID#, packaging, price)
Gift(GiftID,category,coupon)
Toy(CommercialID, GiftID, age)
ID:Toy.CommercialID !,;;; CommerciatProduct.CommercialID#
ID:Toy.GiftID c Gift.GiftID

Fig. 5: Relational schemas used Jor comparisons

16 PertanikaJ. Sci. & Techno\. Vo\. 13 o. 1,2005

class department
s_ag~ofmanager
id d_name
a~ budget
end_class

Developing Translation Rules for Converting Relational to Object Oriented Database Conceptual Schema

classes, which are sometimes not necessary. The translation of the first relational
schema u~ed for the comparison demonstrates this weakness.

The translated into BLOOM 00 Model:
class employee class privileged

subclass privileged superclass employee
id ss# exception_on dept
a~ dept end_class

salary
end_class

In this example, one extra class privileged has been created. According to
Castellanos et aL this class is created because employee. dept is not null-constrained.
Therefore, it can exist as null value. For those employees whose dept attribute
is null, they are considered as "privileged-employees".

According to the definition of key constraint in relational database design,
foreign key either exists as a value of the candidate key it refers to or is null.
Therefore, the forming of class privileged is not necessary since the existence of
null value for dept is perfectly fine. In our approach, the existence of dept in
class employee will be indicated as work_in:department.worked_lJy, showing the
interaction between these two classes. The translated 00 conceptual schema
from Relational Schema 1 using RETOO is shown in Fig. 6, while the comparison
between Castellanos et aL's and our approach on Relational Schema 2 is shown
in Fig. 7.

We have also studied the translation approach proposed by Stanisic, which
translates relational to object-oriented model. However, his translated 00
schema is not semantically rich enough as he only considered inheritance and
aggregation among the classes. Besides, the relationships among the classes are

class department
Attributes

d_name
location
budget
worked_by

end department.
class employee

Attributes
ss#
work in

salary

string;
string;
string;
set(employee) inverse is
employee.work_in;

string;
set(department) inverse is
department.worked_by;
integer;

Fig. 6: Translated 00 schema using RETOO approach

PertanikaJ. Sci. & Techno!. Vo!. 13 o. 1,2005 17

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda

: integer;

: string;
: string;
: string;

Commercial_Product
Gift

By Castellanos

class Commercial_Product
partie_In Toy
Id CommerciallD#
atrs packaging, price

end_class
class Gift

partlc_ln Toy
Id GiftID
atrs category, coupon

end_class
class Toy

cart_aggr_of
Commercial_Product
Gift

atrs
age

end_class

ByRETOO

class Commercial_Product
inherited_by Toy
Attributes

CommercialID# : string;
packaging : string;
price : string;

end Commercial Product.
c/assGift -

inherited_by Toy
Attributes

GiftID
category
coupon

end Gift.
class Toy

inherit
inherit
Attributes

age
end Toy.

Fig. 7: Comparison of translation result' on relational schema 2

not shown clearly in the translated 00 schema. His translated 00 schemas are
shown in Figs. 8 and 9.

As shown in Fig. 9, class Gift and class CommerciaLProduct do not state their
relationship with class Toy. However, with RETOO, the interactions among
classes are specified clearly (refer to Fig. 7).

Fong (1997) also proposed an approach to translate relational to object­
oriented model. Similarly, the translated 00 schema is not semantically rich
enough. For instance, his translation approach did not support multiple
inheritance among classes. Fig. 10 illustrates Fong's approach in translating
Relational Schema 1.

class department
d_name
location
budget

end;
class employee

ss#
dept
salary

end;

string;
string;
string;

string;
ref department;
string;

18

Fig. 8: Translated 00 schema using Stanisic's approach on relational schema 1

PertanikaJ. Sci. & Techno!. Vol. 13 o. 1,2005

: string;
:string;
:string;

: ref commercial-product;
: ref gift;
: number;

Developing Translation Rules for Converting Relational to Object Oriented Database Conceptual Schema

class commercial Product
CommercialID# : string;
packaging : string;
price : string;

end;
class gift

GiftID
category
coupon

end;
class toy _

com-product
gift
age

end;

Fig. 9: Translated 00 schema using Stanisic's approach on relational schema 2

class department
attr d_name : string
attr location : string
attr budget : string
association attr hire ref

set(Employee)
end
class employee

attr ss# string
attr salary string
association attr hired_by ref

department
end

Fig. 10: Translated 00 schema using Fong's approach on relational schema 1

Although there is not much difference shown in translating the first
relational schema, according to his approach, the Relational Schema 2 will be
translated in to the 00 schema, as shown below:

Class Commercial_Product
attr CommercialID:string
attr packaging:string
attr price:integer

end

PertanikaJ. Sci. & Technol. Vol. 13 No. 1,2005 19

Hamidah Ibrahim, Soon Lay Ki, Ali Mamat & Zaiton Muda

Class Gift
attr GiftlD:string
attr category:String
attr coupon:integer

end
Class Toy

attr age:integer
association attr CommercialID ref Commercial_Product
association attr GiftID ref Gift

end
ID:CommercialID ~ Commercial_Product.OlD
ID:GiftID ~ Gift.OID

From the above example, we can see clearly that class Toy is an instance of
class CommerciaLProduct and also an instance of class Gift. Therefore, the
relationship among these three classes would be more precisely labeled as
multiple inheritance. If translated by RETOO, Toy will be considered as
inheritance of both CommerciaLProduct and Gift, as clearly shown in Fig. 7.

SUMMARY

We have proposed a methodology to translate relational database conceptual
schema into object-oriented database conceptual schema. The translation
approach is developed based on the understanding of mapping and
normalization processes in relational database modelling. Undoubtedly, the
relational semantics are maintained perfectly when the relational model is
translated into an object-oriented model. The determiners used in developing
the translation rules are inclusion dependencies, key attributes and types of
attributes. There are four main steps in the translation approach, which operate
based on the ten translation rules.

Besides maintaining the relational semantics, the semantics of our translated
object-oriented conceptual schema is also enhanced with richer object-oriented
concepts such as aggregation and inheritance. Interaction between or among
classes is shown clearly. We also reveal the behavior of every class by adding the
methods in the 00 conceptual schema. The translation rules differ from
previous works in terms of simplified translation approach yet producing a
complete and a better-understood object-oriented database conceptual schema.

REFERENCES

CAsrELlANOS, M., F. SALTOR and M. GARCiA-SOLACo. 1994. Semantically enriching relational
databases into an object oriented semantic model.

CAsrELLANOS, M. and F. SALTOR. 1991. Semantic enrichment of database schemas: an
object-oriented approach. Publication of IEEE: 71-78.

20 PertanikaJ. Sci. & Techno!. Vo!. 13 No.1, 2005

•

Developing Translation Rules for Converting Relational to Object Oriented Database Conceptual Schema

EU,fASRJ, AVATHE. 2003. Fundamentals of Database Systems. 4 th edition. The Benjamin!
Cummings Publishing Company, Inc.

FONG,]. 1997. Converting relational to object-oriented databases. Publication of SIGMOID
Record, 26, o. I.

HUANG, S.M., RH. CHEN, C.H. LI and]. FONG. 1997. A data dictionary system approach
for database schema translation. Publication of IEEE: 3966-3971.

HUGHES,].G. 1991. Object-oriented Databases. I" edition. Prentice Hall.

LUKOVlC, 1. and P. MOGIN. 1996. An approach to relational database schema integration.
Publication of IEEE: 3210-3215.

McBRJEN, P. and A. POULOVASSIUS. 1998. Automatic migration and wrapping of database
applications - A schema transformation approach. Department of Computer Science
Technical Report, King's College London.

SEaL, Y.H. 1997. NAMCIC virtual repository schema translation. In National Academic
Medical Center Information Consortium. http://cat.cpmc.columbia.edu/namcic/trans.html.

SOON, L.K., H. IBRAHIM, A.' MAMAT and C.S. PUA. 2001. Translating from relational model
to object-oriented model. In the International Conference on Information Technology and
Multimedia (ICIMU 2001).

STANISIC, P. 1999. Database transformation from relational to object-oriented database
and corresponding query translation. In Warkshvp on Computer Science and Information
Technology CSIT, p. 199-208.

PertanikaJ. Sci. & Techno!. Vo!. 13 o. 1,2005 21

