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ABSTRACT

Clustering is fundamentally one of the leading origin of basic data mining
tools, which makes researchers believe the normal grouping of attributes
in datasets. The main aim of clustering is to ascertain similarities and
arrangements with a large dataset by partitioning data into clusters. It is
important to note that distance measures like Euclidean distance, should
not be used without normalization of datasets. The limitation of using
both Min-Max (MM) and Decimal Scaling (DS) normalization meth-
ods are that the minimum and maximum values may be out-of-samples
when dataset are unknown. Therefore, we proposed two new normaliza-
tion approaches to overcome attributes with initially large magnitudes
from overweighing attributes with initially smaller magnitudes. The
two new normalization approaches are called New Approach to Min-Max
(NAMM) and New Approach to Decimal Scaling (NADS). To evaluate
the performance of our proposed approaches, simulation study and real
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data applications are considered. However, the two proposed approaches
have shown good performance compared to the existing methods, by
achieving nearly maximum points in the average external validity mea-
sures, recorded lower computing time and clustering the object points to
almost all their cluster centers. Consequently, from the results obtained,
it can be noted that the NAMM and NADS approaches yielded better
performance in the data preprocessing methods, which down weight the
magnitudes of large values.

Keywords: Normalization, k-means, simulation, clustering.

42 Malaysian Journal of Mathematical Sciences



New Approaches to Normalization Techniques to Enhance K-Means Clustering Algorithm

1. Introduction

Clustering is an unsupervised arrangement method with leading objective
of separation, where points in the same cluster are alike, and points belong
to di�erent clusters di�er importantly, with regard to their attributes (Mohd
et al. (2012) and Krishnasamy et al. (2014)). The technique has the general-
ization such that points in a cluster are minimizing intra-cluster sameness and
maximizing the inter-cluster dissimilarity, with regard to their attributes (refer
Nazeer and Sebastian (2009)).

Clustering is fundamentally one of the leading origin of basic data mining
tools, which makes researchers believe the normal grouping of attributes in
datasets in Goil et al. (1999), El Agha and Ashour (2012) and Rokach and
Maimon (2008). Therefore, the quantity of data being gathered in some busi-
ness and scienti�c �elds, may be exposed to data analysis for the comprehen-
sive truths �nding interested and past undiagnosed arrangement. Clustering
approaches most particularly for large scale data with also large number of
attributes are attaining established achievement of undertaking for knowledge
discovery and to achieve data mining in databases with much e�ectiveness and
e�ciency (refer Goil et al. (1999)).

Clustering is often applied as the beginning of �rst steps in data analy-
sis. It functions as an assessment to discover natural clusters in data sets to
identify theoretical patterns that might live in, without having any primary
ideas on the features of data in Mohd et al. (2012). The major aim of clus-
tering is to ascertain similarities and arrangements within a large dataset by
partitioning data into clusters (refer to Suarez-Alvarez et al. (2012)). However,
it is acknowledged that data are taken as unlabeled and clustering is usually
determined as the most important unsupervised learning assignment (refer to
Patel and Mehta (2011) and Suarez-Alvarez et al. (2012)).

Our scope of this study is particularly with partitional clustering algorithms,
which is considered completely for the clusters and at the same time as a par-
tition of the data, that is arrangement of the data objects into non-overlapping
subsets. According to Christopher et al. (2008), there is an important variation
between hard and soft clustering algorithms. Hard clustering computes a hard
task-where each object is a member of exactly one cluster. While soft cluster
task algorithm- an object`s task is being determined by distributing over entire
clusters. It is known that in soft task, an object has fractional relationship in
various clusters.
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The K-Means algorithm was �rst developed by MacQueen (1967) and the
algorithm was later highly-developed and expanded by Lloyd (1982), is the
renowned and fast-breaking approach in partitioning cluster algorithms (refer
to Mohd et al. (2012) and El Agha and Ashour (2012)). The k-means algorithm
process is well automated and is less economical to calculate. Considering its
inexpensiveness in terms of economical charges, it is achievable to analyse very
large sample on a digital computer (MacQueen (1967)).

Founded on its quality and easiness, the K-Means algorithm has been ap-
plied in many areas. The algorithm although is very easy and strong in clus-
tering large data sets, the method su�ers from some setbacks Duwairi and
Abu-Rahmeh, 2015. The number of clusters have to be known before hand
when applying most of the real world data sets in Rokach and Maimon (2008).
It has to undergo the issues of random selection of initial cluster centers (cen-
troids), which may be sensitive to the algorithm in Barakbah and Kiyoki (2009).
Nonetheless, the algorithm cannot achieve global optimum results (refer to
Reddy et al. (2012) and Rokach and Maimon (2008)). The K-Means algorithm
repeatedly converge to a local minimum. The issue of local minimum is be-
ing established on the initial cluster centers. Also, the problem of exploratory
global minimum is NP (nondeterministic polynomial time)-complete (in Oye-
lade et al. (2010)). Usually, k-means algorithm continually updates cluster
centers until local minimum is achieved. It is observed that in literature, one
of the weaknesses of K-Means clustering algorithm is that when unnormalized
dataset is used, it is often that the outcome performance may not reach global
optimum (Han et al. (2011)).

Data preprocessing methods commonly used raw data to make the data
clean, noise free, and consistent (in Patel and Mehta (2011)). Data normal-
ization tasks is to standardize raw data by changing it into classi�ed interval
through linear transformation in order to produce good quality clusters and
improve the accuracy of clustering algorithms. A normalized dataset observe
to produce better outcomes during the actual clustering process by Patel and
Mehta (2011). This prevents out weighing features having a large number upon
features with smaller numbers. The main aim is to equalize the magnitude and
also, prevent the much inconsistency in those features (in Mohamad and Usman
(2013)).

However, the features are expected to have no dimension as the numerical
values of the intervals of dimensional features rest on the units of measurements
and selection of units of measurements may seriously change the outcomes
of clustering. It is important to note that distance measures like Euclidean
distance, should not be used without normalization of datasets (in Aksoy and
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Haralick (2001)), because dissimilarity measure in�uences di�erences in the
magnitudes of the input variables (Milligan and Cooper (1988)). To date,
there is no generally de�nite algorithm for normalizing the datasets, therefore,
the user has right to choose desired algorithm (in Visalakshi and Thangavel
(2009)).

In this study we were motivated by a problem pointed out in Visalakshi and
Thangavel (2009), that up to this present time, there is no speci�cally certain
rule for normalizing the datasets, however, the researcher has open options to
select whichever approach he wishes to apply. In addition, Wu et al. (2009),
stated that, the importance of normalizing validation measures has not been
completely accepted. Also, it was stated by Aksoy and Haralick (2001), that is
essential to take into cognizance that distance measures like Euclidean distance
should not be applied without preprocessing.

Furthermore, according to Nayak et al. (2014) and Ogasawara et al. (2010)
recently, that the main limitation of using both Min-Max and Decimal Scaling
normalization method is that the minimum and maximum values may be out-
of-sample when data set are unknown (according to Kotsiantis and Pintelas
(2004)), samples may have unknown attribute values, which do not have group
attributes associated with the majority of samples). This issue may occur most
especially in data sample like time series forecast data set as it may be applied
to Equations 2 and 3. Supported by Tan et al. (2005) and Hand et al. (2001),
these techniques may lead to important information loss and to a concentration
of values on certain part of the normalized range. Yet, Patel and Mehta (2011),
Visalakshi and Thangavel (2009) and Sola and Sevilla (1997), stated that it
may imply more computational e�ort and also loss of quality in the learning
approaches.

Therefore, the aim of this study is to improve the conventional normaliza-
tion techniques in quest for de�nite algorithm and higher quality clusters from
a standard K-Means algorithm in clustering analysis. This paper is organized
as follows: Section 2 presents materials and methods; the conventional and
proposed methods. Section 3 gives the results and discussion Section 4 �nally,
some concluding remarks were given.
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2. Materials and Methods

2.1 Conventional Methods

In the literature, there are a number of conventional techniques in normal-
ization and standardization, but the most common used ones are min-max,
decimal scaling, and Z-score methods. However, for our study, we are going
to limit ourselves to the two normalization approaches as min-max and deci-
mal scaling. Furthermore, we also would like to investigate the performance
of K-Means clustering algorithm that evaluates dataset without normalization,
which often being practice by practitioners.

2.1.1 K-Means Clustering Algorithm

The K-means clustering algorithm consist of four steps, which are iterated
until convergence (Mohamad and Usman (2013)). The iteration will stop when
the clusters produced are stable, which means there are no more movement of
objects crossing any group. The K-Means algorithms are enlisted by MacQueen
(1967), Lloyd (1982) and Shirkhorshidi et al. (2015) as follows: The K-Means
clustering algorithm is broadly used in data mining to group data with similar
features together. Assumed n data points, the algorithm distributes them into
k groups in three stages: (1) evaluate the distances between data points with
each of k clusters and assign the data to the nearest cluster, (2) calculate the
center of each cluster, (3) update the clusters repeatedly until the k clusters
change no more or stabilized. The aim of the algorithm is to minimize the cost
function. The cost function (in Khan (2012)):

J =

n∑
i=1

k∑
j=1

‖ xi − cj ‖2 (1)

where, ‖ xi − cj ‖2 is an arbitrary distance measure between a data point xi
and the cluster center cj is assigned to the distance of the n data points from
their individual centers.

The algorithm consists of the following steps (Khan (2012)):

1. Initialize the centers at random;

2. Assign data points to their respective clusters having the nearest mean;
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3. Compute new centers as means of the clusters assigned in step 2;

4. Repeat steps 2 and 3 until no change is made in the centers.

It creates a partition of the objects into groups from which the metric to be
minimize can be calculated, after data normalization as given below in Equation
2, 3, 4, and 5.

2.1.2 Min-Max(MM)

The normalization executes linear transformation on the original data. The
min-max represents lowest and highest values for an attribute j, with range
given as (0, 1). The normalized value represents vi, of j to v′i de�ned and
computed as in Jayalakshmi and Santhakumaran (2011):

v′i =
vi −minj

maxj −minj
(2)

where, i = 1, 2, . . . , n and j = 1, 2, . . . , n is attribute values. It is being

stated in Han et al. (2011), that min-max normalization conserves the relation
amongst the primary data values.

2.1.3 Decimal Scaling(DS)

It normalizes the dataset by moving the decimal point of values of attribute
j. The number of decimal points moved depends on the maximum absolute
value of j. The value, vi of j is normalized to v′i and computed as in Han et al.
(2011):

v′i =
vi
10j

(3)

where j is the smallest integer (the integer j is equal to the maximum numbers
of digits; example, 986, j = 3).

2.2 Proposed Methods

In this section we will discuss the two proposed normalization approaches.
The two proposed approaches are based on the min-max of in Jayalakshmi and
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Santhakumaran (2011) and decimal scaling of by Han et al. (2011). Therefore,
in Jayalakshmi and Santhakumaran (2011) and Han et al. (2011) claimed that
by normalizing the data preserves the relationship among the original data
values. Data transformation such as normalization may improve the accuracy
and e�ciency of mining algorithms like K-Means algorithm. They further
emphasized that for distance-based methods, normalization helps to prevent
attributes with initially large ranges from overweighting attributes with initially
smaller ranges.

Therefore, on some limitations and weaknesses of normalization of by Jay-
alakshmi and Santhakumaran (2011) and Han et al. (2011), that up to this
present time there is no speci�cally certain rule for normalizing the datasets;
however, the researcher has open options to select whichever approach he(she)
wishes to apply (refer to Visalakshi and Thangavel (2009)). While, by Wu et al.
(2009) supported that the importance of normalizing validation measures has
not been completely accepted. Also, by Han et al. (2011), noted that normal-
ization can change the original data quite a bit especially when using decimal
scaling.

Furthermore, in Liu (2011) and Jain et al. (2005), have identi�ed one of the
weakness of using both the min-max and decimal scaling in data transforma-
tion. They stated that both of the methods will have over�ow problem, this
makes the two methods lack robustness. However, inZumel and Mount (2013)
and Jain et al. (2005), suggested that, in order to remedy this problem in dec-
imal scaling method, one may use log10max(xi). While in min-max method,
and Liu (2011) and Milligan (1989), suggested to down weighing the method
so that irrelevant variables approach near zero.

Therefore, we were motivated by lack of robustness of the two methods and
we adopted the ideas suggested by Zumel and Mount (2013) and Jain et al.
(2005), for decimal scaling and (Liu (2011) and Milligan (1989)) for min-max
methods to improve the methods of min-max (Jayalakshmi and Santhakumaran
(2011)) and decimal scaling (Han et al. (2011)).

The two new approaches to normalization techniques are tagged as NAMM
(New Approach to Min-Max) and NADS (New Approach to Decimal Scaling).
The proposed approaches are summarized as follows.

2.2.1 New Approach to Min-Max (NAMM)

The new approach to min-max, adopted ideas from Liu (2011) and Milligan
(1989). It has its parameters as minimum and maximum, which are being
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represented by the lowest and highest values respectively and the attributes
having range as (0, 1). The normalized value is calculated using the ideas from
Equation 2 with changes made in the denominator by introducing c variable as
follows:

v′i =
vi −minj

(maxj −minj)c
(4)

where c = 2 is a constant raised to the power of the denominator. Therefore,
any integer greater than two will make the variable values approximately zero.

The constant c is an integer used, in order to down weight (Liu (2011)
and Milligan (1989) maximum variable values dominating the variability of the
magnitudes.

2.2.2 New Approach to Decimal Scaling (NADS)

The new approach to decimal scaling is formulated following the ideas of
Zumel and Mount (2013), but with a slight modi�cations where normalization
is done by replacing the decimal point of values of feature j with that of c+1.
The number of decimal points moved depends on the maximum absolute value
of the attributes by Mohamad and Usman (2013). The new approach to decimal
scaling is calculated using the ideas from Equation 3 with the introduction of
c+ 1 to power 10 replacing the maximum absolute integer value with absolute
real value using logarithm base 10 as follows:

v′i =
vi

10(c+1)
(5)

where c = log10max(xi); if evaluated without adding 1 to c, all the variable
values will be slightly greater than 1, which is out of bound for the upper range.
Therefore, it is calculated based on the following conditions and rules:

1. We �rst compute the largest absolute value in each row using logarithm
base 10 and plus 1 each.

2. Then, divide the original row value by 10 raised to this computed value
to obtain the normalized value.

However, it is important to mention that after the transformation of data
by min-max, decimal scaling and the two proposed methods, the following steps
are carried out to compare the performance of the proposed methods and the
existing methods:
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1. Perform the K-Means clustering (with unnormalized data).

2. Then, perform the K-Means clustering with the classical and the proposed
normalization methods.

3. Some external measures such as Purity (in Hernandez-Torruco et al.
(2014)), Fowlkes-Mallow Index (in Velardi et al. (2012), Rand Index
(Noorbehbahani et al. (2015)), F-Measure Score, Jaccard Index, F-Measure
(β varied) (refer to Velardi et al. (2012)), Geometric Means (Tomar and
Agarwal (2015)), Precision (Kou et al. (2014) and Rokach and Maimon
(2008)), Speci�city (Velardi et al. (2012)), Accuracy (Tomar and Agar-
wal (2015)), Sensitivity (Velardi et al. (2012)) and the computing time
(minutes) are recorded.

3. Results and Discussion

3.1 Simulation Study

In this section, Monte Carlo simulation study is presented to compare
the performance of some existing methods such as Conventional K-Means by
Shirkhorshidi et al. (2015) (not transformed), Min-Max (Jayalakshmi and San-
thakumaran (2011)), and Decimal Scaling (Han et al. (2011)), with our pro-
posed methods NAMM (New Approach to Min-Max) and NADS (New Ap-
proach to Decimal Scaling). Following Shirkhorshidi et al. (2015), Jayalakshmi
and Santhakumaran (2011) and Han et al. (2011), two variables (x1, x2) and
four variables (x1, x2, x3, x4) are generated such that each of the exploratory
variables (x1, x2) and x1, x2, x3, x4 are simulated from uniform distribution
with range [−10, 10]. The variables are clustered into three class (luster or
group) as cluster 1, cluster 2 and cluster 3. We consider a sample of size
(50, 100, 160). The conventional distance functions, K-Means clustering algo-
rithm, Min-Max (MM), Decimal Scaling (DS) and the proposed New Approach
to Min-Max (NAMM) and New Approact to Decimal Scaling (NADS) were
then applied to the data.

Some external validity measures such as: Purity, Fowlkes-Mallow Index,
Rand Index, F-Measure Score, Jaccard Index, F-Measure (β varied), Geomet-
ric Means, Precision, Speci�city, Accuracy, Sensitivity, and the computing time
(minutes) are recorded. In each of the experimental runs, there are 1000 repli-
cations. The performance of the �ve methods are evaluated based on average
external validity measures for each methods , computational timing (minutes)
and having three levels of cluster as; cluster 1, cluster 2, and cluster 3.
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n = 50, (x2, x2)

Table 1: Av. Ext. Validity Measures, Computing Time and Max. Clusters

Method Convt. MM DS NAMM NADS
Purity 0.8444 0.8333 0.8556 0.8788 0.8878

Fow. M.I. 0.7357 0.7447 0.8168 0.8781 0.8885
Rand Index 0.7567 0.7655 0.8304 0.8852 0.8997
F.M.Score 0.7444 0.7355 0.7553 0.8778 0.8871
Jaccard I. 0.7879 0.7890 0.7913 0.8569 0.8607
F.M. Varied 0.7358 0.7367 0.7554 0.8778 0.8788
G-Means 0.7589 0.7567 0.7657 0.8831 0.8907
Precision 0.7380 0.7400 0.8608 0.8792 0.8738
Speci�city 0.7678 0.7689 0.7778 0.8889 0.8900
Accuracy 0.7568 0.7668 0.7704 0.8852 0.8865
Sensitivity 0.7444 0.7434 0.7556 0.8778 0.8795
Average 0.7610 0.7619 0.7941 0.8790 0.8839

Comput. time(min) 32 32 28 23 22
Clust.1(max15) 11 11 10 13 14
Clust.2(max15) 12 11 11 14 13
Clust.3(max20) 11 12 14 15 16

n = 50, (x1, x2, x3, x4)

Table 2: Av. Ext. Validity Measures, Computing Time and Max. Clusters

Method Convt. MM DS NAMM NADS
Purity 0.8444 0.8333 0.8556 0.8988 0.9078

Fow. M.I. 0.8457 0.8547 0.8668 0.8981 0.8885
Rand Index 0.8567 0.8655 0.8704 0.8905 0.9007
F.M.Score 0.8444 0.8355 0.8553 0.8977 0.8871
Jaccard I. 0.7879 0.7890 0.8163 0.8569 0.8607
F.M. Varied 0.8358 0.8367 0.8554 0.8778 0.8788
G-Means 0.8589 0.8567 0.8657 0.8831 0.9078
Precision 0.8380 0.8400 0.8608 0.8792 0.8708
Speci�city 0.8678 0.8689 0.8778 0.8889 0.8900
Accuracy 0.8568 0.8668 0.8704 0.8852 0.8865
Sensitivity 0.8444 0.8434 0.8556 0.8778 0.8795
Average 0.8437 0.8446 0.8591 0.8849 0.8871

Comput. time(min) 38 38 36 34 33
Clust.1(max15) 11 10 12 13 12
Clust.2(max15) 10 11 11 11 11
Clust.3(max20) 13 13 14 16 17
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n = 100, (x1, x2)

Table 3: Av. Ext. Validity Measures, Computing Time and Max. Clusters

Method Convt. MM DS NAMM NADS
Purity 0.8666 0.8555 0.8778 0.8900 0.8990

Fow. M.I. 0.8579 0.8669 0.8789 0.8993 1.0000
Rand Index 0.8789 0.8877 0.8792 0.9000 1.0000
F.M.Score 0.8666 0.8577 0.8775 1.0000 1.0000
Jaccard I. 0.7890 0.7900 0.8185 0.8780 0.8829
F.M. Varied 0.8578 0.8589 0.8776 0.8991 0.8911
G-Means 0.8713 0.8789 0.8879 0.8931 0.8956
Precision 0.8590 0.8422 0.8830 0.9000 0.8930
Speci�city 0.8890 0.8890 1.0000 1.0000 1.0000
Accuracy 0.8788 0.8889 0.8972 1.0000 1.0000
Sensitivity 0.8666 0.8656 0.8778 1.0000 1.0000
Average 0.8620 0.8619 0.8869 0.9327 0.9511

Comput. time(min) 41 41 39 37 34
Clust.1(max30) 24 23 23 24 27
Clust.2(max30) 22 22 21 24 26
Clust.3(max40) 24 25 33 37 37

n = 100, (x1, x2, x3, x4)

Table 4: Av. Ext. Validity Measures, Computing Time, and Max. Clusters

Method Convt. MM DS NAMM NADS
Purity 0.8511 0.8511 0.8511 0.8722 0.8711
Fow.M.I 0.8312 0.8412 0.8522 0.8734 0.8625
Rand I. 0.8514 0.8414 0.8734 0.8945 0.9000

F.M.Score 0.8412 0.8413 0.8511 0.8822 0.8733
Jaccard I. 0.7745 0.8695 0.8851 0.9052 0.9070
F.M.Varied 0.8330 0.8420 0.9520 0.9535 0.9545
G-Means 0.8563 0.8573 0.9000 0.9775 0.9745
Precision 0.8340 0.8440 0.8540 0.9667 0.9548
Speci�city 0.8565 0.8745 0.8900 0.9000 0.9000
Accuracy 0.8523 0.8523 0.8734 0.9745 0.9000
Sensitivity 0.8333 0.8411 0.8511 0.9622 0.9612
Average 0.8377 0.8505 0.8758 0.9238 0.9144

Comput. time(min) 42 43 40 37 37
Clust.1(max30) 23 23 22 23 24
Clust.2(max30) 21 22 22 24 24
Clust.3(max40) 24 25 30 36 35
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n = 160, (x1, x2)

Table 5: Av. Ext. Validity Measures, Computing Time, and Max. Clusters

Method Convt. MM DS NAMM NADS
Purity 0.9411 0.9411 0.9411 0.9622 0.9511
Fow.M.I 0.9201 0.9301 0.9411 0.9534 0.9625
Rand I. 0.9403 0.9503 0.9323 0.9745 1.0000

F.M.Score 0.9630 0.9301 0.9400 0.9622 0.9533
Jaccard I. 0.8634 0.8834 0.8930 0.9052 0.9070
F.M.Varied 0.9220 0.9310 0.9410 0.9535 0.9535
G-Means 0.9452 0.9462 0.9500 0.9775 0.9734
Precision 0.9240 0.9330 0.9430 0.9557 0.9503
Speci�city 0.9454 0.9734 0.9600 1.0000 1.0000
Accuracy 0.9412 0.9412 0.9423 0.9745 0.9800
Sensitivity 0.9201 0.9301 0.9400 0.9622 0.9601
Average 0.9296 0.9354 0.9385 0.9619 0.9628

Comput. time(min) 60 57 57 53 53
Clust.1(max50) 35 41 40 43 44
Clust.2(max50) 36 37 39 40 40
Clust.3(max60) 50 51 50 53 52

n = 160, (x1, x2, x3, x4)

Table 6: Av. Ext. Validity Measures, Computing Time, and Max. Clusters

Method Convt. MM DS NAMM NADS
Purity 0.8733 0.9433 0.9433 0.9844 0.9733
Fow.M.I 0.8534 0.9334 0.9444 0.9756 0.9847
Rand I. 0.8736 0.9436 0.9656 0.9967 1.0000

F.M.Score 0.8630 0.9334 0.9433 0.9844 0.9755
Jaccard I. 0.8367 0.8977 0.8973 0.9274 0.9290
F.M.Varied 0.8550 0.9340 0.9440 0.9757 0.9767
G-Means 0.8785 0.9495 0.9800 0.9997 0.9967
Precision 0.8561 0.9361 0.9461 0.9779 0.9705
Speci�city 0.8787 0.9667 0.9700 1.0000 1.0000
Accuracy 0.8745 0.9445 0.9656 0.9967 1.0000
Sensitivity 0.8534 0.9334 0.9433 0.9844 0.9834
Average 0.8633 0.9378 0.9494 0.9821 0.9809

Comput. time(min) 81 68 67 62 62
Clust.1(max50) 40 43 42 44 43
Clust.2(max50) 35 37 38 42 44
Clust.3(max60) 40 49 50 54 53

Tables (1−6), exhibit the average values of 1000 replications of the external
validity measures, computational timing (minutes), and maximum number of
samples in each clusters. A good normalization method is the one that has
average external validity measure closer to 1 or (1) at maximum, minimum
computation time, and has the correct number of samples (as prior assigned
above) in each clusters.
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It can be clearly observed from Tables (1−6), that the two proposed meth-
ods; NAMM and NADS had shown the maximum average performance of ex-
ternal validity measures, recorded the lowest computational time and clustered
the maximum clusters in each groups. For example in Table 6, with sample size
(n = 160;x1, x2, x3, x3); the average external validity measures for NAMM and
NADS are 0.9823 and 0.9811, respectively, which is closer to 1 and computing
time (minutes) for both are 62 and 62, respectively. The total clustered out of
160 for NAMM and NADS are 140 (44, 42, 54) and 140 (43, 44, 53), respectively.
However, the conventional method (without transformation) gave the smallest
value. For its average external validity measures is 0.8626, computing time is
81 and total clustered is 117 (40, 37, 40. This indicates that the performance
of NAMM and NADS are more accurate and e�cient compared to the existing
methods. It is evident that the conventional method without transformation
give the poor results. Therefore, based on this simulated data results, the two
proposed methods may be used especially in distance-based data preprocessing
clustering analysis methods in many sectors of real lfe situations.

In order to see the e�ect of outliers on the performance of our proposed
methods, the data are contaminated with 5% and 10% outliers. Here, we con-
sidered three di�erent sample size (n = 50, 100, 160), with two (x1, x2) and
four (x1, x2, x3, x4) attribute variables each. Each of the variables are gener-
ated from uniform distribution [−10, 10]. The contaminated data (outliers)
is generated from uniform distribution [15, 16]. The data is contaminated by
replacing certain percentage of good observations with outliers. The average
external validity measures and computational times are then recorded in Table
7.

Table 7 exhibits clearly the advantage of data preprocessing procedure be-
fore any clustering analysis especially distance-based. It can be observed that
the proposed methods in the presence of outliers still were able to perform well
based on the maximum average performance of external validity measures, and
lower computing time for each methods. This �nding has shown evidently that
our proposed methods are better compared to the existing methods even in the
presence outliers.
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n = (50, 100, 160)

Table 7: Average External Validity Measures and Computing Time

n Cont. Method
x1, x2 x1, x2, x3, x4

Av.Ext. C.Time Av.Ext. C.Time

50

5%
Conv. 0.6434 57 0.6191 60
MM 0.7051 56 0.6933 58
DS 0.7149 55 0.7016 59

NAMM 0.7628 49 0.7340 52
NADS 0.7703 48 0.7421 51

10%

Conv. 0.5811 67 0.5674 70
MM 0.6479 63 0.6211 64
DS 0.6532 61 0.6353 63

NAMM 0.6991 56 0.6774 58
NADS 0.7002 55 0.6834 57

100

5%
Con. 0.7010 68 0.6819 72
MM 0.7274 65 0.7163 67
DS 0.7277 65 0.7181 67

NAMM 0.7632 61 0.7318 63
NADS 0.7594 61 0.7310 63

10%

Conv. 0.6175 73 0.6021 75
MM 0.6490 71 0.6341 73
DS 0.6487 71 0.6327 73

NAMM 0.6908 66 0.7029 68
NADS 0.6917 66 0.7015 68

160

5%
Conv. 0.6001 74 0.5872 76
MM 0.6285 71 0.6174 73
DS 0.6310 71 0.6200 73

NAMM 0.6874 66 0.6631 69
NADS 0.6822 65 0.6602 69

10%

Conv. 0.5460 77 0.5168 80
MM 0.5847 72 0.5633 76
DS 0.5921 72 0.5670 76

NAMM 0.6572 68 0.6214 70
NADS 0.6695 67 0.6304 69
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3.2 Real Data Applications

In this section, the Iris and Hayes-Roth datasets are considered to verify
the performance of our proposed methods:

3.2.1 Iris dataset

The iris dataset was applied by many researchers such as in Galili (2012),
Jayalakshmi and Santhakumaran (2011), Benson-Putnins et al., (2011) and
Han et al. (2011). The dataset contains 3 classes of 150 instances each , where
each class refers to a type of iris plant. It comprises the following attributes
information: (1) Sepal length in cm, (2) Sepal width in cm, (3) Petal length in
cm, and (4) Petal width in cm. The classes are listed as follows: (1) iris Setosa,
(2) iris Verisiclor, and (3) iris Virginica (refer to Bache and Lichman (2013)).

3.2.2 Hayes-Roth dataset

The Hayes-Roth dataset was used by many researchers such as Han et al.
(2011), Jayalakshmi and Santhakumaran (2011) and Ryu and Eick (2005). The
dataset contains 3 classes of 160 instances each, with 4 attributes namely: (1)
hobby, (2) age, (3) educational and (4) marital status (Bache and Lichman
(2013)).

Tables 8 and 9 presents the average performance of external validity mea-
sures and computing time under each distance functions. Generally, on the
average, all the two datasets indicated that the two proposed approaches had
shown impressive performance based on higher maximum average external va-
lidity measures and lower computing time. It is noted that, based on the two
datasets applied; real numbers used in iris dataset gives higher quality perfor-
mance in the external validity measures compared to integer numbers used in
Hayes-Roth dataset.
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Table 8: Average External Validity Measures and Computing Time under each Distance Functions,
Iris Dataset

Methods Convt. Min-Max D.Scaling NAMM NADS
Purity 0.9072 0.9079 0.9072 0.9305 0.9319

F.Mallow Index 0.9188 0.9157 0.9174 0.9239 0.9305
Rand Index 0.9206 0.9176 0.9233 0.9398 0.9413
F.M(F-Score) 0.9003 0.9077 0.9052 0.9173 0.9219
Jaccard Index 0.8933 0.8967 0.8933 0.9201 0.9308
F.M(F-βvaried) 0.9016 0.9051 0.9022 0.9109 0.9145

G-Means 0.9045 0.9137 0.9211 0.9287 0.9291
Precision 0.9038 0.9164 0.9182 0.9211 0.9252
Speci�city 0.9219 0.9395 0.9347 0.9401 0.9472
Accuracy 0.9137 0.9218 0.9161 0.9214 0.9291
Sensitivity 0.9067 0.9081 0.9069 0.9378 0.9393
Average 0.9084 0.9137 0.9132 0.9265 0.9310

Comput.Time(Min.) 48 47 47 44 43
Clust.1(max150) 138 136 136 140 140
Clust.2(max150) 138 137 138 138 138
Clust.3(max150) 91 141 140 141 140

Table 9: Average External Validity Measures and Computing Time under each Distance Functions,
Hayes-Roth Dataset

Methods Convent. Min-Max D.Scaling NAMM NADS
Purity 0.4250 0.4267 0.4309 0.4485 0.4497

F.Mallow Index 0.4129 0.4211 0.4256 0.4371 0.4384
Rand Index 0.4375 0.4383 0.4450 0.4575 0.4603
F.M(F-Score) 0.4261 0.4275 0.4280 0.4305 0.4391
Jaccard Index 0.4132 0.4266 0.4259 0.4391 0.4395
F.M(F-βvaried) 0.4152 0.4218 0.4247 0.4294 0.4300

G-Means 0.5463 0.5477 0.5483 0.5545 0.5561
Precision 0.4133 0.4139 0.4141 0.4206 0.4219
Speci�city 0.6171 0.6185 0.6188 0.6211 0.6229
Accuracy 0.5037 0.5045 0.5133 0.5251 0.5290
Sensitivity 0.4355 0.4386 0.4393 0.4408 0.4453
Average 0.4587 0.4623 0.4649 0.4731 0.4757

Comput.Time(Min.) 49 48 48 46 46
Clust.1(max160) 99 99 99 99 100
Clust.2(max160) 87 88 88 89 89
Clust.3(max160) 73 74 74 75 76
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4. Conclusion

In this paper, we proposed two normalization approaches to overcome at-
tributes with initially large range from overweighting attributes with initially
smaller ranges. The new normalization approaches are called new approach
to min-max (NAMM) and new approach to decimal-scaling (NADS). The pro-
posed approaches are based on normalizing the data to preserves the relation-
ship among the original data values and also, may improve the accuracy and
e�ciency of mining algorithms like the K-Means algorithm.

The results indicate that the conventional K-Means without normalization
has the least performance. This is due to the fact that distance measures like
Euclidean distance, should not be applied without normalization of datasets.
Although, the two proposed approaches have good performance; evidently, by
achieving nearly maximum points in the external validity measures and clus-
tering the object points to almost all their cluster centers and recorded lower
computing time.

From the results, it can be concluded that the NAMM and NADS ap-
proaches are much better in the data preprocessing methods; which down
weight the magnitudes of larger values.
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