Chemical Constituents of *Alpinia purpurata*

Hasnah Mohd. Sirat¹ and Md. Rizal Liamen
Department of Chemistry
Faculty of Science
Universiti Teknologi Malaysia
KB. 791, 80990 Johor Bahru, Malaysia

Received 13 August 1993

ABSTRACT

The rhizomes of *Alpinia purpurata* collected in Universiti Teknologi Malaysia, Skudai contained an unstable labdane diterpene, labda-8(17), 12-diene-15, 16-dial and an alkaloid piperine. Their structures were established by spectroscopic methods. This is the first report on the isolation of a piperine alkaloid from an *Alpinia* species.

Keywords: *Alpinia purpurata*, Zingiberaceae, rhizome, labdane diterpene, piperine alkaloid

INTRODUCTION

The genus *Alpinia* (Zingiberaceae) with about 25 species, is distributed in lowland and hill forests of Peninsular Malaysia (Holttum 1950). Several species of *Alpinia* are used as flavouring agents, while several others are used as ingredients in traditional medicine formulations (Burkill 1966). *Alpinia purpurata* is one of the species cultivated in gardens for ornamental purposes for its attractive and long-lasting flowers.

¹ Author to whom correspondence should be addressed
METHODS AND MATERIALS

The rhizomes of *A. purpurata* were collected from the Landscape Unit, Universiti Teknologi Malaysia, Skudai, Johor. A voucher specimen was deposited in the Herbarium of the Dept. of Biology, Universiti Pertanian Malaysia, Serdang, Selangor. Thin-layer chromatography was performed on Merck pre-coated plates silica gel F254. Column chromatography was performed on silica gel (Merck 230-400 mesh). Infrared spectra were recorded on a Perkin Elmer 727B spectrophotometer and 1H and 13C NMR were recorded on a Bruker AM 300 spectrometer in CDC13 with TMS as an internal standard.

Isolation and Identification of Constituents

Dried rhizome of *A. purpurata* (100g) was extracted with chloroform in a soxhlet apparatus for 24 h, and the solvent was evaporated under reduced pressure to give crude product (3.7 g). The crude extract was fractionated using dry short flash column chromatography (Clark-Still *et al.* 1978) using a linear petroleum ether-ether gradient system to give four fractions (A-D). Fraction A was subjected to silica gel column chromatography and chromatotron to give 1 (180 mg). Fraction B was subjected to silica gel column chromatography several times using petroleum ether - ether (3:1) followed by recrystallisation to give 2 (100 mg).

Labda-8(17), 12-diene-15,16-dial (1)

Unstable oil; EI-MS: m/z (%), 302 (58), 273(10), 258(8), 177(11) and 137(100); HRMS: M+ Found 302.2246 C20H30O2 requires 302.2238; IR vmax cm⁻¹: 3070, 1645, 890 (exomethylene bands), 1730, 1690(C=O); 1H NMR (CDCl3)8: 0.75, 0.85 and 0.90 (3H each, s, methyl H-18, 19 and 20), 1.45-2.50 (14H, m, CH2 and CH3), 3.40 (2H, br. s, H-14), 4.40 (1H, br.s, H-17), 4.86 (1H, br.s, H-17), 6.76 (1H, t, J = 6.6Hz, H-12), 9.36 (1H,s,H-16) and 9.62 (1H, br.s, H-15); 13C NMR (CDCl3) δ: 14.4 (C-20), 19.3 (C-2), 21.7 (C-19), 24.1 (C-6), 24.7 (C-11), 33.6 (C-18 and C-4), 37.8 (C-14), 39.2 (C-1), 39.3 (C-7), 39.6 (C-10), 42.0 (C-3), 55.4 (C-5), 56.5 (C-9), 107.8 (C-17), 134.7 (C-13), 148.0 (C-8), 159.8 (C-12), 193.4 (C-16), and 197.1 (C-15).

Piperine (2)

Pale yellow crystals, mp. 132-134°C, (lit. m.p. 128°C) (Agarwal 1975); EI-MS: m/z (%) 285(73), 261(100), 173(29), 143(17), 115(56) and 84(22), HRMS: M+ Found 285.1365 C17H19NO3 requires 285.1360; IR νmax (nujol) cm⁻¹: 1640 (C=O), 1595 and 1500 (C=C); 1H NMR (CDCl3)δ: 1.6 (6H, m, 3x CH3), 3.6 (4H,m, 2x CH2N), 5.98 (2H, s, methylenedioxy group), 6.44 (1H,d, J = 14.7 Hz, H-2), 6.74-6.78 (3H, m, overlapping peaks of H-4, H-5 and H-5'), 6.90 (1H, dd, J = 8.0, and 1.6 Hz, H-6'), 6.99 (1H,d, J = 1.6 Hz, H-2') and 7.44 (1H, ddd, J = 14.7, 8.0 and 2.3 Hz, H-3); 13C NMR (CDCl3) δ: 24.6(CH2),
RESULTS AND DISCUSSION

The rhizome extractives of *A. purpurata* yielded two components. The structures were elucidated by spectroscopic methods. The major constituent was a labdane-type diterpene labda-8(17),12-diene-15,16-dial (1) while the minor constituent was an alkaloid piperine (2).

Compound (1) had the molecular formula C_{20}H_{30}O_{2} by high resolution MS (M^+ at m/z 302) and appeared as an unstable oil. Its IR spectrum showed two strong carbonyl absorptions at 1730 and 1690 cm\(^{-1}\), and an exomethylene absorption at 1645 and 890 cm\(^{-1}\).

The \(^1\)H NMR spectrum indicated the presence of two aldehydic protons [\(\delta 9.62\) and 9.36]. A one-proton triplet [\(\delta 6.76, J = 6.6\) Hz] was consistent with an olefinic \(\beta\)-proton (H-12) of an \(\alpha\beta\)-unsaturated carbonyl group. Signals for the exomethylene protons of H-17 [\(\delta 4.40\) and 4.86] and the three methyl groups [\(\delta 0.75, 0.85\) and 0.90] are typical of labdane diterpene. This was supported by the appearance of a characteristic mass fragment at m/z 137 (100%) in the mass spectrum (Budzikiewicz et al. 1964). Thus compound (1) was concluded to be labda-8(17),12-diene-15,16-dial by comparison with the spectral data of the compound isolated from *A. speciosa* (Itokawa et al. 1980b). The structure was also supported by the \(^{13}\)C NMR data as shown in the experimental section.

Compound (2), which was isolated as a minor component, had the molecular formula C_{17}H_{19}N_{0.3} by high resolution MS (M^+ at m/z 285) and appeared as pale yellow crystals. The IR spectrum showed the carbonyl amide absorption at 1640 and carbon-carbon double bond absorption at 1595 and 1500 cm\(^{-1}\). The \(^1\)H NMR spectrum showed the presence of a methylenedioxy group [\(\delta 5.98\)], a piperidine ring [\(\delta 1.6\) and 3.6], an \(\alpha\beta\)-unsaturated carbonyl grouping [\(\delta 6.44, d, J = 14.7\) Hz for H - 2 and 7.44, ddd, \(J = 14.7, 8\) and 2.3 Hz for H - 3], three aromatic protons [\(\delta 6.78, d, J = 8.0\) Hz, H-5', 6.90, dd, \(J = 8.0\) and 1.6 Hz, H-6' and 6.99, d, \(J = 1.6\) Hz, H-2'], and two other olefinic protons [\(\delta 6.74-6.78, m, H-4\) and H-5, overlapping with H-5']. Compound (2) was identified as piperine alkaloid by direct comparison with
Hasnah Mohd. Sirat and Md. Rizal Liamen

an authentic sample isolated from \textit{Piper nigrum} (Agarwal 1975). The structure of piperine (2) was also in agreement with the 13C NMR data summarized in the experimental section. This work represents the first report on the chemical constituents of \textit{A. purpurata} and the isolation of piperine from the genus.

ACKNOWLEDGEMENTS

The authors thank Mr. Ahmad Abd. Rahman of the Department of Biology, Universiti Pertanian Malaysia, Serdang for the identification of the plant specimen, Prof. Dr. Sam Teng Wah of Universiti Sains Malaysia, Penang for recording the NMR spectra, Dr. Graeme B. Russell of Plant Protection Division, Dept. of Scientific and Industrial Research, New Zealand for the help of mass spectra, and also IRPA Malaysia for financial support.

REFERENCES

Chemical Constituents of *Alpinia purpurata*

