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ABSTRAK

ElGamal dan LUC adalah dua contoh sistem kripto awam. Berdasarkan kepada
dua sistem ini, LUCELG dibangunkan dengan mengambil kira kekuatan
kedua-dua sistem tersebut. Gabungan ElGamal dan sistem kripto beranalog
kubik kepada RSA (LUC3) menghasilkan satu sistem kripto yang barn. Mengikut
kaedah (Smith94), satu skema tandatangan digital dicadangkan. Aspek
keselamatan sistem dikaji dan walaupun sistem-sistem ini bergantung pada
kesukaran pemfaktoran atau masalah logaritma diskrit, namun sistem-sistem ini
tidak boleh dibanding secara terns.

ABSTRACT

EIGamal and LUC are examples of a public-key cryptosystem. Based on these
two systems, LUCELG that depends on the strength of the two systems was
constructed. The combination of EIGamal and the cubic analogue of the LUC
cryptosystem (LUC~) produces a new public-key cryptosystem. Following
(Smith94), a new digital signature scheme is proposed. The security aspects of
the system are also looked into and although all these systems appear to
depend on the intractability of factorization or of the discrete logarithm
problem, the systems do not seem to be readily comparable.
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PUBUC-KEY CRYPTOSYSTEMS

Public-key cryptosystem is a concept invented by Diffie and Hellman (1976).
They presented the concept but not the practical implementation of a system.
Since 1976, numerous public-key systems have been proposed but many of
these are insecure and impractical such as Knapsack public-key encryption and
Merkle-Hellman knapsack encryption (Men). Only a few are secure and practical.
One such example presented by Rivest et al. (1978) as a practical way to
implement a public-key cryptosystem is the well-known RSA cryptosystem (RSA).
Smith & Lennon (1993), following cryptographic application of Lucas function
(Lucas), proposed an analogue to RSA, known as the LUC cryptosystem (Smith
93).
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Let a, f3 be the roots of the quadratic equation

x2 - Px + Q= O.

Two particular solutions of the general second-order linear recurrence relation
denoted by Un and Vn, are defined by

and

These are sequences of integers since we have:

These sequences depend only on the integers P and Q, and the terms are
called the Lucas functions of P and Q They are sometimes written as Un(P,Q)
and Vn(P,Q), in order to show their dependence on P and Q. They were first
discussed by Lucas (1878) and satisfy the second-order linear recurrence
relations

If N is any positive integer, then

Vn(P mod N, Q mod N) = Vn(P,Q) mod N
Un(P mod N, Q mod N) = Un(P,Q) mod N,

because this result is certainly true when n is 0 or 1, and for every n which is
2 or greater, we have

Vn(Pmod N, Qmod N) = Pmod N(V.,....j(P,Q) mod N) - Qmod N(V....
2
(P,Q)

mod N).

Similarly

Un(Pmod N, Qmod N) = Pmod N(U.,....I(P,Q) mod N) - Qmod N(U....
2
(P,Q)

mod N).

If we take Q = 1, we then get the simple relationship
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This composition result is important as it is a clear generalization of the rule
for composition of power, with the subscript of a Lucas function playing the
role of a power, thus enabling Smith to construct an analogous system to RSA.
He then went on to introduce an analogue to the EIGamal cryptosystem (Elg) ,
naming it LUCELG (Smith94) and a digital signature system, LUCELG DS.

LUCELG PUBLIC-KEY SYSTEM

In LUCELG, the receiver chooses a prime p and the initial values P, and Q = 1
which are publicized such that p2 - 4Q mod p is a quadratic non-residue, and

V(P+l) (P,Q) 'f 2 mod p,

for all t > 1 dividing (P + 1). Let us say Alice wants to send a message to Bob,
so Bob (receiver) must choose the private key x, and publish the public key
y == VX<P, Q) mod p.

A message m is an integer satisfying 1 m p-1. To encrypt a message, Alice
needs to choose a secret number k, which is an integer satisfying 1 k P - 1,
calculates G == Vk(y, Q) mod p, e1 == Vk(P, Q) mod p and e2 == em mod p. The
encrypted message is the pair .

To decrypt the message, Bob needs to compute

Vx(e1,Q) == Vx(Vk(P,Q),Qk) == Vkx(P,Q) == G mod p

and the inverse of G. Then Bob can find the message m, because m == e
2
C-1 mod

p.
It is very important that Q is chosen so that Q == 1 mod p; the recipient needs

to know Q" mod p for the secret value k in order to compute V"x<P, Q) from
v,.(P,Q) using

This problem can be solved by taking Q == 1 mod p.

Let a = t[p+~p2 -4Q]. and!:! = p2 - 4(4 Legendre symbol (!:!/p)= -1, then

O!:!/P E Fp2,the finite field of p2 element, via an isomorphism that we denote
by qJ . The condition (!:!/p) is to make sure that one is working in the finite field
Fp2 lather than Fp The condition that Vc(P,Q) t:- 2 mod p for proper divisors c
of p + 1 is to ensure that the multiplicative order of the image qJp(a) E Fp2 is
equal to p + 1. If qJ/an) = 1 then Vn(a) == 2 mod p and Un (a), which does not
happen for any proper divisor of p + 1 by this condition.
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THE EXTENDED LUCAS FUNCTIONS

In [SL], Said and Loxton (2003) obtained two results, using the extended
theory of the Lucas function by Lehmer (1930) [Leh], which were used to
develop a public-key cryptosystem analagous to LUC. These are the higher
order analogues of the two equations that were used in the LUC system: the
extension of the rule for the composition of powers and the extension of Euler
totient function for the elements of the sequence of the third order linear
recurrence relation.

Let a, [3, r be the roots of the polynomial equation ~ - P:i'- + Qx - R = O. By
analogy with the Lucas sequence and referring to the cubic equation above, the
extended Lucas sequence of numbers are defined as

V
n
(P,Q,R) = an + [3n + 1',

Un(P,Q,R) = an + mj3n + uf21'
Wn(P,Q,R) = an + oi~ + ur;",

where m= t(-1 +.1=3) is a cube root of unity. Then the sequences (V) n' (U) n

and (YV) n all satisfy the linear recurrence with characteristic equation Xn+3 +
PX - QX I + RX. All the V must be integers, as the first three of the numbers

n+2 n+ n n

are integers, that is

W(P,Q,R) = 3
Vl(P,Q,R) =P

and

~(P,Q,R) = p - 2Q

The term V,iP, Q,R) can be written as the d-th term of another sequence of
functions defined by integers ":(P,Q,R), ":(Q,PR,R~, and Rk, that is V,iP,Q,R) =
Vi ":(P, Q,R), ":( Q,PR,R2), Rk).

If we let R = 1 the expression can be simplified to
Ve<t(P,Q,I) = Vi":(P,Q,I), ":(Q,P,l),I)

= Vi ,,:(P,Q,I) , ~-e<P,Q,I),I)

Let N be a product of two distinct odd primes p and q. If we pick a number e
such that (e, <1>(N) = 1, then we can solve

ed == 1 mod <1> (N)

for d where d is the inverse of e modulo et>(N) = P q the function defined in
[SL]. Therefore
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V
d

( y'(P, (61), y.( Q;P,I) ,1) = V,,iP,Q;I)
= Vk<l>(N)+l(P,Q;I) for some integer k
= Pmod N

and in a similar manner, we have

V,iY.(Q;P,I),Y.(P,Q;I),I) == Qmod N.

A NEW PUBUC-KEY CRYPTOSYSTEM

In this system, a prime p and the initial values of P, Q and R are publicized.
Each user chooses a private key_x, and publishes the public keys

y == V.(P,Q;I) mod p
y' == y'(P,Q;I) mod p

A message m is an integer satisfying 1 m p- 1. To encrypt the message for
user, the sender needs to choose a secret k, such that 1 k P- 1, and compute

G == V:(y,y',I) mod p,
d

l
== V

k
(P,Q;I) mod p,

d2 == V:(Q;P,I) mod p,
d~ == em mod p. (1)

The encrypted message consists of (dl,d2,d~). To decrypt the message, the user
computes

V.(d1A,l) == Vx(V/P,(61), V:(Q;P,I),I) mod p
== V

xk
(P,(61) mod p,

==G

and then calculates C-1
• The extended Euclidean algorithm can be applied to

calculate C-1
• He then inverts the result modulo p and recovers m == d~C-l mod p.

Example 1:
Let us choose a prime p = 101 and we will use small parameters for P, Q as an
example. Suppose we take the initial values P = 6, Q = 9, R = 1; the equation
of a cubic is fix) == ~ - 6x2 + 9x - 1 mod 101. Bob chooses a secret key, x = 2,
and computes the values ~(6,9,1) = 18 and ~(9,6,1) = 69, and these values are
the public keys. If Alice wants to send a message, she needs to choose a secret
random key, k = 3. She then computes

G == V
k
(Vx(P,Q;I),vx«(6P,I),I) modl0l

== ~(~(6,9,1) ~(9,6,1),1) modl0l
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== ~(l8,69,1) mod101
== 2109 mod101
== 89

and

d~ == m~(l8,69,1)mod101

== 100x(89)mod101
== 12

The encryption messages are (~(6,9,1),~(9,6,l),d~)= (57,570,12). If Bob wants
to decrypt the encrypted message, he needs to compute

G == ~(V3(6,9,1) ~(9,6,1),1)mod101

== V2(57,570,1)mod101
== 2109mod101
== 89

and calculate for C-1
: Using the extended Euclidean algorithm, we get

89y == 1 mod101
101 = 89(1) + 12
89 = 12(7) + 5
12 = 5(2) + 2
5 = 2(2) + 1

Working from the bottom to the top

1 = 5 - (2)
= 5 -[12 - 5(2)](2)
= (5)5 - 12(2)
= (5)[89 - 12(7)]- - 12(2)
= (5)89 - 12(37)
= (5)89 - (37)[101 - 89(1)]
= (42)89 - (37)101,

and thus C-1 = 42. From equation (l),

d~ == Gmmod101
m == C-ld~ mod101

== 504mod101
== 100

In conclusion, Bob can decrypt the message, m = 100 from Alice.
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LUCELG DS DIGITAL SIGNATURE SCHEME

A signature scheme is a method of signing a message stored in electronic form.
It consists of two components: a signing algorithm and a verification algorithm.
Let us say Alice sends a message to Bob, after Bob has signed the message; he
sends back the message to Alice to verify it. So, Alice then knows that Bob has
received the message.

ow, let us see how Bob computes the signed message. Bob computes his
'signature'S for the M message using DB:

Then Bob encrypts S using EA and sends EA(S) to Alice. He does not need
to send M, because it can be computed from S. After getting the EA(S), Alice
decrypts the ciphertext with D

A
to get S. She knows who the sender of the

signature is (in this case Bob). Later, Alice can obtain the message M with the
encryption procedure of the sender, M = EB(S) , where EB(S) is available on the
public file.

She can possess a message-signature pair which is similar to a signed paper
document. Bob cannot deny sending this message to Alice, because no one else
could create S = DB(M). To create S = DB(M), we need the secret key which is
kept by Bob. Finally, Alice can confirm that Bob signed the document. And
Alice cannot modify M, since she needs to create the corresponding signature
S = DB(M') as well.

To sign a message, we need to satisfy some requirements. Let B be the .
recipient of a message M signed by A. Then A's signature must satisfy the
following requirements:
• B must be able to validate A's signature.
• It must be impossible for anyone, including B, to forge A's signature.
• If A denies signing message M, it must be possible for a third party to

resolve a dispute arising between A and B.

LUCELG DS

In this digital signature scheme [Smith94], two public key values are needed.
They are

y == V.(P,l)mod p

and

y' == U.<P,l)mod p

Similarly, two values for the part of the signature are needed. A secret key
k, must be chosen for each message, m.

r == ~(p,l)mod p
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and

l' == U/P,I)mod p.

The s component of the signature is calculated similar to EIGamal [Elg],
except that the equation is solved modulo (P+-l) rather than modulo (P-l).
Using the extended Euclidean algorithm we can solve for s by using

s == k-1(m - xr)mod (p + 1)

To verify a LUCELG DS signature, we need to check

v,. == VS"+xr mod p

(2)

that is the right hand side (RHS) must be the same with the left hand
side(LHS). The left hand side

LHS == Vm(P,I)mod p

The right hand side (RHS) equation is more complicated than in EIGamal.
From the equation above we know that

2Vslt+xr == v,,,Vxr + DU",Uxr mod p
1

RHS == -{V(y,l) V(r,l) + Dy'U(y,l)r'U(r,I)}mod p2 T S T S

where

D == p2 - 4mod p.

(3)

If RHS = LHS then the quadruple (m,r,r',s) is an authentic LUCELG DS
signature.

A NEW DIGITAL SIGNATURE SCHEME

The main idea of the protocol described below is to generate a new digital
signature scheme. In this scheme, two public-keys are necessary. The public­
keys are set up as follow:
(i) Choose a large prime p of at least 512-bit length.
(ii) Choose a random number k in the range I :s; k:S; p. A random key should

be chosen for each message (or message block),
(iii) Choose as a document to be signed, where 0 :s; m :s; p.

The public keys are

y == V
x
(P,Q,I)mod p, and y' == V'<Q,P,I)mod p.
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The Signing Procedure

The signing procedure of a message say, consists of the following steps:
L. Alice computes a signing using a secret value key, x. Say Alice publishes the
value y == ":(P,Q,l)mod p and y' == V'(Q,P,l)mod p.
L. User Alice chooses a random k with gcd(k, P+ 1)=1, is a secret value. If k
is chosen such that gcd (k, p + 1), then the equation (2) has a solution for s.
By the equation above, we have

r == Vk(P,Q,l)mod p, and l' == Vk(QP,l) mod p

• Using the extended Euclidean algorithm, s can be solved by using

s == k:1(m - xr)mod (p + 1).

• User Alice calculates the left hand side

Vm == V.,...,,, mod p.

From the properties of the extended Lucas functions [SL], we have

thus

(4)

V..u "

where

- .!. Iy,y',l) Vs(r,r',l) Wr(y,y',l) Us(r,r',l)
3
+Ws(r,r',l) Ur(y,y',l) Ur(y,y',l)}mod p (5)

u,,, = U,(V,,(P,Q,R),V.(Q,P,l),l) = U,(r,r',l)
~" = "':(V.(P,QR), V.(Q,P,l) ,1) = ~(r,r',l)

v,,, = v,( V.(P, Q,R), V,,( QP,l),l) = v,( r,r',l)

This is the same as

U
TX

= U
T
(y,y',l)

W
TX

= ",:(y,y',l)
V

TX
= V,(y,y',l)

Verification Procedure

To verify a signature (m,r,r',s), we examine whether

Vm == V.,...,,, mod p
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because m == xr + sk mod (p + 1). The right hand side (RHS) is more
complicated than the LUCELG DS. If RHS = LHS, then the signature is valid.

Example 2:
Suppose Bob wants to sign the message m = 5, and he chooses the random value
and the secret key x = 2, (note that gcd (3,8) = 1). The value for P = 6, Q = 9
and the function f is given by

j(x) = ,c - 6x2 + 9x - 1.

Let p be a prime, p = 7, and a, {3, yare roots ofj(x). By using the Cardan's
formulae [Tig], we can calculate

a=2+u+v
{3 = 2 + mu + oJv
y = 2 + oJu + cov

where u3 = t(-1 + ~) and 0(-1 + H). The public keys are

y == V(6,9,l)mod 7
== 18 mod 7
== 4 mod 7

y == V(9,6,I)mod 7
== 69

Bob chooses the random value k = 3, and computes
r == V3(6,9,I)mod 7

== 57 mod 7
== 1 mod.

r' == ~(9,6,I)mod 7
== 570 mod 7
== 3 mod 7.

and from equation (4), we know

s == k-1(m - xr) mod (p + 1)
== 3-1(5 - 2)mod 8
== 3(3)mod 8

== 1

To verify the signature (m,r,r',s) = (5,1,3,1), we check whether
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To check the right hand side, from equation (5) we have

V It == .!. {V (y,y',I) V (r, r', 1) W (y,y', 1) U (r,r', 1)
XT+s 3 T S T S

+ Ws(r,r',I)Ur(y,y',1) mod p

1
== - {~(4,6,1) VI (1,3,1)+~ (4,6,1) UI (1,3,1) ~ (1,3,1) ~ (4,6,1) }mod 7

3

1
== - {~(18,69,1) ~ (57,570,1)+~ (18,69,1) ~ (57,570,1)

3
+ ~(57,570,I)UI(18,69,1)} mod 7

1
== - {~(6,9,1) ~(6,9,1)+ ~(6,9,1) U3(6,9,1)+ ~(6,9,1)~(6,9,1)}mod 7

3

1
== - {( a2+tJ2+y2) (ct+f33+t) +(a2+co2tJ2+wf) (a3+cof33+co2y3)

3
+ (ct + co2f33 + cot) (a2+ cotJ2 + co2y2)} mod 7
== {a5+ (35 + l' + a2f33 + a2y3 + tJ2a3+ tJ2t + y2a3+ y2f33}
+ {a5+ (35 + t + co2a 2f33 + coa2t + cotJ2a3+ co2tJ2y3 + co2y2ct + coif33}
+ {a5+ (35 + t + coa2f33 + co2a2y3 + co2tJ2a3+ cotJ2t + coia3+ co2y2f33}mod

7
== a5 + (35 + i' mod 7
== 5.

To check the left hand side, we calculate Vm = ~. We know that ~ = 3, ~ = 6,
~ = 18, and

V
3

== 6~ - 9~ + ~ mod 7
== 6(18) - 9(6) + 3 mod 7
== 108 - 54 + 3 mod 7
== 1 mod 7

By using the same method, ~ mod 7 == 4, and
~ == p~ - Q~ + ~ mod 7

== 6(4) - 9(1) + 18 mod 7
== 5 mod 7

Since ~ == V..,.+sIt mod 4, so the quadr~ple (5,1,3,1) of Bob signature is an
authentic signature.

CRYPTOGRAPFUCSTRENGTH
There are two ways to discuss the security of a cryptosystem. These are
computational security and unconditional security. We call a cryptosystem
'computationally secure' if the best-known method of breaking the cryptosystem
needs a large amount of computer time, such as Shift Cipher and Substitution
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Cipher. Another approach is to give some evidence of computational security
by reducing the security of the cryptosystem to some difficult problems. We
know that RSA and its variants depend on the intractability of factorization but
this only provides a proof of security relative to some other problems, not an
absolute proof of security. The same is true for LUCELG and the proposed
system which depend on the intractability of the discrete logarithm problem. A
cryptosystem is defined to be 'unconditionally secure' if it cannot be broken,
even with infinite computational resources.

Randomized Encryption

The proposed cryptosystem is a randomized encryption. The randomized
encryption techniques increases the cryptographic security of an encryption
process through the following methods [Men]:
• Increasing the effective size of the plaintext message space.
• Decreasing the effectiveness of chosen plaintext attacks by virtue of a one

to many mappings of plaintext to ciphertext.
• Decreasing the effectiveness of statistical attack by leveling the a priori

probability distribution of inputs.

Discrete Logarithm Problem

The discrete logarithm problem (DLP) is the following [Men]: given a prime
p, a generator a of Zp and an element {3 E Zp> find the integer x, 0 x p- 2,
such that ax =(3 mod p.

The best algorithm for solving the Discrete Logarithm (DLP) problem relies
on combining congruences multiplicatively [Smith94]. This cannot be done
with extended Lucas functions because extended Lucas functions are not closed
under multiplication. Hence these subexponential algorithms cannot be applied
to our proposed system. Breaking the system is equivalent to solving for x in
equation V)P,(6I), where P, C and p are known. To find Vx(P,Q,I) we need
to compute (a2+{32+t) , (a3+{33+t) ,... and therefore inefficient if x is large.

The most powerful method for computing discrete logarithms is the index­
calculus algorithm. This algorithm cannot be applied to the proposed encryption
algorithm. But let us see how the index-calculus method works to EIGamal
cryptosystem [Stin]. The method uses a factor base, which is a set B of 'small'
prime. Suppose B = {Pl,p2, ... ,PB}. The first step is to find the logarithms of the
B primes in factor base. The second step is to compute a discrete log of element
{3. We construct C = B + 10 mod p,

with 1 } C, and

Then we take the random value x, compute ax mod p, and then determine if
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if mod p has all its factors in B. If we have successfully carried out the
precomputation step, we choose a random integer, s where (1 ~ s ~ p- 2) and
compute

y == ma' mod p

Factor y over the factor base B. If this can be done, we obtain a congruence of
the form

This can be written equivalently as

since everything is known, except logam. But this cannot apply to the proposed
system because we have (a' + f3s + 1)

CONCLUSIONS

The proposed system is a combination of EIGamal and the cubic analogue of
the RSA cryptosystem. The security of this cryptosystem, as does LUCELG,
depends on the intractability of the discrete logarithm problem. Further
research can be continued to discuss the complexity of the algorithms and the
efficiency of the proposed cryptosystem. Other aspects of security could also be
investigated.
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