ISSN: 0128-7680 © Universiti Putra Malaysia Press

Pertanika J. Sci. & Technol. 11(2): 293 - 300 (2003)

Synthesis and Physico-Chemical Investigation of Vanadium Phosphorus Oxide Catalysts Derived from $VO(H_{9}PO_{4})_{9}$

Y. H. Taufiq-Yap & C. K. Goh

Department of Chemistry, Faculty of Science and Environmental Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

Received: 13 June 2002

ABSTRAK

Mangkin vanadium fosforus oksida telah disediakan melalui $VO(H_2PO_4)_2$ dengan menggunakan dua kaedah: i) tindak balas V_2O_4 dengan σ -H₃PO₄ dan ii) penurunan $VOPO_4.2H_2O$ dengan menggunakan oktan-3-ol. Prekursor ini dikalsinkan dalam campuran *n*-butana/udara pada 673 K selama 75 jam. Mangkin ini dicirikan dengan menggunakan pelbagai teknik, seperti luas permukaan BET, XRD, FTIR dan SEM.

ABSTRACT

Vanadium phosphorus oxide catalysts were prepared via $VO(H_2PO_4)_2$ by using two methods: i) reaction of V_2O_4 with σ -H_3PO_4 and ii) reduction of $VOPO_4$ ·2H₂O with octan-3-ol. The precursors were calcined in *n*-butane/air mixture at 673 K for 75 h. These catalysts were characterised by using various techniques, such as BET surface area, XRD, FTIR and SEM.

Keywords: Vanadium phosphorus oxide, *n*-butane, maleic anhydride, vanadyl dihydrogen phosphate, partial oxidation

INTRODUCTION

Vanadium phosphorus oxide catalysts have been widely accepted to contain selective and active phase for heterogeneous oxidation of n-butane to maleic anhydride (Centi 1993). Vanadyl pyrophosphate, $(VO)_{9}P_{9}O_{7}$ (V⁴⁺ phase with a P/V ratio of 1) was claimed to be the main crystalline phase for industrial catalysts. This phase is mostly generated from the precursor phase, VOHPO.0.5H₂O via a topotactic transformation during the catalyst activation (Centi 1993; Johnson et al. 1984). Initially, VOHPO, 0.5H, O precursor can be prepared by: i) using aqueous HCl as the reducing agent for V₂O₅ and ii) using isobutanol as the reducing agent and solvent for V₂O₅. Sananes et al. (1994; 1995a; 1995b; 1996) have investigated the preparation of VPO catalysts derived from VO(H₂PO₄)₂. They claimed that this catalyst displays ultraselective formation of maleic anhydride and no CO or CO₂ formation at low *n*-butane conversion. However, Hannour et al. (1998) found that the activity and selectivity of the amorphous and partly crystalline VO(PO₃), catalysts were not exceeding 40% with formation of CO and CO_o. A small amount of furan, acrylic acid, acetic acid and acrolein were also observed. These findings are in agreement with

Y. H. Taufiq-Yap & C. K. Goh

Wang *et al.* (2000) where maleic anhydride selectivity observed was typically 50% with CO and CO₂ formation. Later, Bartley *et al.* (2000a; 2000b) introduced the synthesis of catalyst derived from VO(H_2PO_4)₂ precursor by using aldehydes and ketones as reducing agents. They reported that the selectivity to maleic anhydride is typically 20-30% due to impurity of VO(H_2PO_4)₂. Even with these controversies in the literatures, continual efforts are still being made to investigate the physico-chemical properties of VO(H_2PO_4)₂ catalyst. In this study, vanadium phosphorus oxide catalysts derived from VO(H_2PO_4)₂ precursor were prepared using two methods: i) reaction between V_2O_4 with phosphoric acid and ii) reduction of VOPO₄.2H₂O by using 3-octanol. Their physico-chemical characteristics were compared to the catalyst prepared by the normal organic method via VOHPO₄.0.5H₂O precursor.

EXPERIMENT

Catalyst Preparation

Preparation of VOHPO₄.0.5H₂O

15 g of V_2O_5 (from Fluka) was suspended by rapid stirring into a mixture of isobutyl alcohol (90 mL) and benzyl alcohol (60 mL). The mixture was refluxed for 3 h at 393 K with continuous stirring. The mixture was then cooled to room temperature and left stirring at this temperature overnight. The o-H₃PO₄ (85% from Merck) was added and further refluxed for 2 h. The blue slurry was then filtered, washed and dried at 373 K for 24 h. The resulting precursor is referred to as VPOpreA.

Preparation of VO(H₂PO₄)₂ from V₂O₄

10 g of V_2O_4 (from RdH) was refluxed with 82 mL of ρH_3PO_4 (85% from Merck) at 453 K for 1 h. The suspension was centrifuged and the solid was redispersed with diethyl ether. Finally, the product was dried at 373 K for 24 h. The resulting precursor is referred to as VPHpreA.

Preparation of $VO(H_2PO_4)_2$ from Reduction of $VOPO_4.2H_2O$ by Using 3-octanol

 $VOPO_4.2H_2O$ was prepared by reacting V_2O_5 (12 g from Fluka) with oH_3PO_4 (115.5 g, 85% from Merck) in water (24 mL H_2O/g solid) under reflux for 24 h. The yellow solid was recovered by filtration, washed with water and then acetone and dried at 383 K for 24 h. $VOPO_4.2H_2O$ recovered was refluxed with 3-octanol (50 ml alcohol/ mol $VOPO_4.2H_2O$) for 21 h. Then, the blue solid product was obtained by filtration and was dried at 373 K for 24 h. The resulting precursor is referred to as VPHpreB.

All the precursors were calcined in *n*-butane/air mixture (0.75% *n*-butane in air) for 75 h at 673 K and the resulting catalysts were denoted as VPO, VPH-A and VPH-B, respectively.

Synthesis and Physico-Chemical Investigation of Vanadium Phosphorus Oxide

Catalysts Characterisation

X-ray diffraction (XRD) analyses were carried out by using a Shimadzu diffractometer model XRD-6000 Diffractometer employing CuK_{α} radiation generated by a Phillips glass diffraction x-ray tube broad focus 2.7 kW type on the catalysts at ambient temperature.

Fourier transform infrared (FTIR) spectra were obtained by using a Perkin Elmer 1725X Spectrometer. The instrument was equipped with an infrared source element, a KBr beam splitter and a detector.

B.E.T. (Brunauer-Emmer-Teller) surface area measurements were carried out by using nitrogen adsorption-desorption at 77 K using a Micromeritics ASAP 2000 instrument.

SEM was done using a JOEL JSM-6400 electron microscope. The samples were coated with gold by using a Sputter Coater. The photographs were captured using a Mamiya camera with Kodak Verichrome Pan 100 black and white negatives.

RESULTS AND DISCUSSION

B.E.T. Surface Area Measurements

B.E.T. surface area of the two catalysts derived from VO(H_2PO_4)₂ precursor were significantly low, *i.e.* 1.1 m²g⁻¹ for VPH-A and 2.3 m²g⁻¹ for VPH-B compared to 18.2 m²g⁻¹ for VPO catalyst. This result is in agreement with those reported earlier by Sananes *et al.* (1995a; 1996), Hannour *et al.* (1998) and Bartley *et al.* (2000a; 2000b). The adsorption-desorption isotherms of nitrogen at 77 K for all the catalysts were shown in *Fig. 1*. These catalysts gave isotherms of Type II with the presence of hysteresis loop (Sing *et al.* 1985), indicating the presence of a mixture of porosity and mesopores. The hysteresis loop is a type E, indicating the presence of pore with ink-bottle shape or by pores having varying widths.

X-ray Diffraction

Fig. 2 shows the XRD patterns of all the precursors. VPOpre gave the characteristic peaks of VOHPO₄.0.5H₂O (JCPDS File No. 37-0269) at 2θ = 15.0°, 27.0° and 30.5° correspond to (001), (121) and (220) planes, respectively. VPHpreA showed only sharp diffraction peaks for VO(H₂PO₄)₂ (JCPDS File No. 40-0038) at 2θ = 14.0°, 28.2° and 31.6° correspond to (110), (220) and (130) planes, respectively. However, VPHpreB gave diffraction peaks of a mixture of VOHPO₄.0.5H₂O and VO(H₂PO₄)₂. The peaks' relative intensities for VPHpreB are lower compared to VPOpre and VPHpreA.

The XRD patterns of VPO, VPH-A and VPH-B catalysts are shown in *Fig. 3*. VPO shows characteristic peaks of $(VO)_2P_2O_7$ (JCPDS File No. 34-1381) with main peaks at 2θ = 23.0°, 28.5° and 30.0°, which correspond to the reflections from (020), (204) and (221) planes, respectively. The diffractogram of VPH-A catalyst gave a poor crystalline of VO(PO₃)₂ in agreement with the finding by Hannour *et al.* (1998) with a very broad peak spanning 2θ = 10.0°- 60.0°,

Y. H. Taufiq-Yap & C. K. Goh

Fig. 1: The adsorption-desorption isotherms of nitrogen at 77 K for VPO, VPH-A and VPH-B catalysts

Fig. 2: XRD patterns of VPOpre, VPHpreA and VPHpreB

Pertanika J. Sci. & Technol. Vol. 11 No. 2, 2003

Synthesis and Physico-Chemical Investigation of Vanadium Phosphorus Oxide

Fig. 3: XRD pattern of VPO, VPH-A and VPH-B

indicating the presence of an amorphous phase. However, small peaks at 2θ = 22.3°, 24.0°, 27.0°, 32.8° and 53.0° were observed which correspond to (001), (220), (211), (040) and (260) planes, respectively and assigned to VO(PO₃)₂ (JCPDS File No. 34-1433). The XRD patterns of VPH-B catalyst gave (VO)₂P₂O₇ as the main phase at 2_= 22.9°, 29.0° and 30.0°. Additional smaller peaks which were also observed could all be assigned to VO(PO₃)₂.

Fourier Transform Infrared (FTIR)

FTIR spectra for VPO, VPH-A and VPH-B catalysts were shown in *Fig. 4.* VPO shows the absorption bands at 1248, 1148, 1100, 1030, 970, 930, 740 cm⁻¹ and a series of bands in the region below 700 cm⁻¹. However, VPH-A and VPH-B revealed a broad band in the region 1230-900 cm⁻¹. The bands with wave numbers above 700 cm⁻¹ can be assigned to valence vibrations of P-O bonds in various anions of phosphorus with oxygen and the bands from the region below 700 cm⁻¹ can be assigned to deformation vibration of these groupings (Brutovsky *et al.* 1982). The absorption bands at 1248, 1148, 1100 and 1030 cm⁻¹ of VPO are assigned to vibration of two PO₃ groups, which differ by the type of symmetry, and the bands at 970, 930 and 740 cm⁻¹ can be assigned to the vibrations V=O, v_{as} (POP) and v_{s} (POP), respectively. The band at 1230 cm⁻¹ for VPH-A and VPH-B can be assigned to v_{as} (PO₃). Detailed assignment of the observed bands is shown in Table 1.

Y. H. Taufiq-Yap & C. K. Goh

Fig. 4: FTIR spectrum of VPO, VPH-A and VPH-B

TABLE 1										
ssignment	of	IR	absorption	bands	of	VPO,	VPH-A	and	VPH-B	

	Vibration			
VPO	VPH-A	VPH-B		
1248	1230	1230	ν (PO ₂)	
1148, 1100, 1030	1170, 1050, 1036	1140, 1065	v(PO)	
970	990	990	V=O	
930	940	and a start from the	$v_{\rm r}(\rm POP)$	
740	and they en accession	GIORNAL MERIA	v _s (POP)	

Scanning Microscopy Electron

The SEM micrographs for VPO, VPH-A and VPH-B catalysts shown in *Fig.* 5 gave distinctly different morphologies. VPO catalyst appeared to be rosetteshape agglomerate, consisting of plate-like crystals which was similar to the reported morphology for $(VO)_2P_2O_7$ catalyst (Kiely *et al.* 1995). The dominant morphology observed for VPH-A was blocky-shape with regular sided oblong crystallites with the ratio of the sides being 1:1:4 regardless of the dimensions of the crystal. This result is in agreement with the findings reported for VO(PO₃)₂ obtained by Sananes *et al.* (1996). The VPH-B consists of a mixture of smaller oblong blocky-shape and plate-like crystallites with the size of 1-3 µm in length and less than 100 nm in thickness. This result is consistent with the XRD result where the particle thickness at (040) for VPH-B and VPH-A catalysts are 921.6 and 2072.0 Å, respectively. Synthesis and Physico-Chemical Investigation of Vanadium Phosphorus Oxide

(b)

BG193 15KV TX7. 608 14mm

(c) Fig. 5: SEM micrographs of (a) VPO, (b) VPH-A and (c) VPH-B

ACKNOWLEDGEMENT

Financial assistance from the Malaysian Ministry of Science, Technology and Environment is gratefully acknowledged.

Y. H. Taufiq-Yap & C. K. Goh

REFERENCES

- BARTLEY, J. K., C. RHODES, C. J. KIELY, A. F. CARLEY and G. J. HUTCHINGS. 2000. *n*-Butane oxidation using VO(H₂PO₄)₂ as catalyst derived from an aldehyde/ketone based preparation method. *Phys. Chem. Chem. Phys.* **2**: 4999-5006.
- BARTLEY, J. K., R. P. K. WELLS and G. J. HUTCHINGS. 2000. The unexpected role of aldehydes and ketones in the standard preparation method for vanadium phosphate catalysts. J. Catal. 195: 423-427.
- BRUTOVSKY, M., S. GEREJ, F. VASILCO and J. GEREJOVA. 1982. X- ray diffractograms and IR spectra of modified vanadium-phosphate catalysts. *Col. Chec. Chem. Commun.* 47: 1290-1300.
- CENTI, G. 1993. Vanadyl pyrophosphate catalysts. Catal. Today 16: 5.
- HANNOUR, F. K., A. MARTIN, B. KUBIAS, B. LUCKE, E. BORDES and P. COURTINE. 1998. Vanadium phosphorus oxides with P/V=2 used as oxidation and ammoxidation catalysts. *Catal. Today* **40**: 263-272.
- JOHNSON, J. W., D. C. JOHNSTON, A. J. JACOBSON and J. F. BRODY. 1984. Preparation and characterization of VO(HPO₄),0.5H₂O and its topotactic transformation to (VO)₂P₂O₇. *J. Am. Chem. Soc.* **106**: 8123- 8128.
- KIELY, C. J., S. SAJIP, I. J. ELLISON, M. T. SANANES, G. J. HUTCHINGS and J. C. VOLTA. 1995. Electron microscopy studies of vanadium phosphorus oxide catalysts derived from VOPO₄.2H₉O. *Catal. Lett.* **33**: 357-368.
- SANANES, M. T., I. J. ELLISON, T. MARIA, J. C. VOLTA and G. J. HUTCHINGS. 1994. Control of the composition and morphology of vanadium phosphate catalyst precursors from alcohol treatment of VOPO₄.2H₉O. J. Chem. Soc. Chem. Commun. 1: 1039-1094.
- SANANES, M. T., G. J. HUTCHINGS and J. C. VOLTA. 1995. On the role of the VO(H₂PO₄)₂ precursor for *n*-Butane oxidation into maleic anhydride. *J. Catal.* **154**: 253-260.
- SANANES, M. T., G. J. HUTCHINGS and J. C. VOLTA. 1995. *n*-Butane to maleic anhydride and furan with no carbon oxide formation using a catalysts from VO(H₂PO₄)₂. *J. Chem. Soc. Chem. Commun.* 1: 243-244.
- SANANES, M. T., I. J. ELLISON S. SAJIP, A. BURROWS, C. J. KIELY, J. C. VOLTA and G. J. HUTCHINGS. 1996. *n*-Butane oxidation using catalysts prepared by treatment of VOPO₄.2H₉O with octanol. *J. Chem. Soc. Faraday Trans.* **92**: 137-142.
- SING, K. S. W., D. H. EVERETT, R. A. W. HAUL, L. MOSCOU, R. A. PIEROTTI, J. ROUQUEROL and T. SIEMIENIEWSKA. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. *Pure & Appl. Chem.* 57: 603.
- WANG D., M. C. KUNG and H. H. KUNG. 2000. Oxidation of butane over vanadiumphosphorus oxides of P/V≥2. *Catal. Lett.* 65: 9-17.