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ABSTRAK

Kertas ini membincangkan kaedah butstrap tak berparameter bagi menentukan
ralat piawai anggaran parameter model regresi ortogon. Kaedah butstrap
persentil, persentil pincang dibetulkan, persentil pincang dibetulkan secara pantas
(BCA) dan BCA terlelar digunakan bagi membina selang keyakinan bagi
parameter model tersebut. Daripada kajian simulasi yang dijalankan didapati
selang keyakinan berdasarkan kaedah BCA ferlelar mememubhi ciri-ciri selang
keayakinan yang dikehendaki.

ABSTRACT

This paper discusses the nonparametric bootstrap method for evaluating the
standard errors of the parameter estimates of orthogonal regression. The
percentile, bias-corrected, the bias-corrected and accelerated (BCA), and the calibrated or
iterated BCA method were considered for confidence intervals for the param-
eters of the model. Based on simulation studies, it was found that the iterated
BCA method produced a more reliable confidence interval than the other
methods.
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INTRODUCTION

Consider a pair of variables (&,7) satisfying a linear relationship n=a+ f¢,
with a and B to be estimated; (£,n) cannot be observed directly. Instead,
(£.1) are both observed with errors, i.e., we observe the pair (x, y) where

=&+,
(1)

Yi=mn+téE

with errors §; and ¢;, respectively. The {} are (fixed) mathematical
variables. The model (1) is known as a linear functional relationship (LFR).
We shall consider the special case in which the variance ratio A = V(g;)/V(§;) =1.
With this specification, the LFR in (1) is better known as the orthogonal
regression model.
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Two approaches to the estimation of the parameters have been dis-
cussed in the literature. In the maximwum Lkelihood estimation (MLE) (Kendall
and Stuart 1973: Chapter 29; Fuller 1987) it is assumed that the observa-
tions (x, y,) are independent N(.fi,crz) and N((x+ B i,0'2) variates, respec-
tively, for i=1,...,n. A more general formulation for estimating the param-
eters in (1) is the generalized least squares estimation (GLSE) (Sprent 1966).
In the GLSE approach no assumptions are made about the distributions
of the observations. The GLSE approach chooses the estimators of a and
B which minimize

(y; — o= Bx;) /(1+B2)

M:

i=1

Both the MLE and GLSE estimations yield identical estimators of @ and 8, i.e.,

(syy—sxx)Jr\f(syy ~S) +482,

p= . (2) Q)
a=y-f (2) (i)
where

Se=2(x-%)2,8,, = X3~ 7). 8, = Z(x,— E)(3:—- 7),

Patefield (1977) derives the asymptotic variance-covariance matrix of
the maximum likelihood estimators of @ and B. When o¢? is unknown, a
consistent estimator of the variance-covariance matrix is

(1+ ﬁ)azﬁ/nsxy[fga:)%sx, /B(_If'?)ﬁ)} (3)
where
1.: _ 6'?3 wad ~2 _ 21’16’2
(/l+ﬂ2)sxy (n-2)

is the consistent estimator of c”and 672is the maximum likelihood estima-
tor of o.

Based on the normality assumptions Kendall and Stuart (1973) con-
structed a 100(1- y) % confidence interval for B. The confidence limits for
B are given by
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(S5, — S, @
(n— 2)[(Syy 8.0 = 453}

P p
tan lﬁi55m ! 2ty 5502

where 7, ,,,, is the (1-y / 2) percentile point of the t distribution with n-2
degrees of freedom.

Our interest is to examine an alternative approach to the parametric
confidence interval in (4) which does not rely on the normality assump-
tion. This paper discusses, via a simulation study, the use of the
nonparametric bootstrap method to assess the standard error and confi-
dence intervals for the parameters of the model. The use of the
nonparametric bootstrap method is justified since the estimators in (2) (i)-
(ii) can be considered as being derived from a general formulation which
makes no normality assumptions about the observations.

BOOTSTRAPPING THE ORTHOGONAL REGRESSION
Let the model (1) be written in the form

X & 5; .
- [yij: (nz)_‘_(sij_ Shk

where

n; = o+ BE;.

Let F denote the common distribution function of the z and the param-
eter vector 0 = (a, B)T. As shown in the previous section, existing methods
for estimating the statistical accuracy of the estimators are largely asymp-
totic, and may not apply in finite samples. The bootstrap method, how-
ever, may overcome this difficulty as it automatically produces accuracy of
the estimates and it can be applied in a wide range of situations.

BOOTSTRAP STANDARD ERRORS

The bootstrap method advocated by Efron (1979) works by sampling from
the empirical distribution function of F, denoted by F , and then estimating
the parameter 8(F) by 6(F ). The sampling distribution of 8(F) is esti-
mated by simulating that of 6(F ). This is done by repeatedly drawing
‘resamples’ from the original sample ‘with replacement’ and for each
resample calculating a value of 6(F ).
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Supp?se we are interested in obtaining a bootstrap distribution of
é:(d,ﬁ) where @ and f are given by (2)(i)-(ii), respectively. We may
proceed by calculating Monte Carlo approximations based on the.com-

plete observation vector z. The bootstrap distribution of 8=(a,8] may
be approximated by drawing B samples of size n from

X ) . -
F: mass 1/n at g =( ) i=1,...,, n, each time creating pseudo-data set
i
AW

-‘ A% ol ] T &
z‘-‘ =(X‘,] from which 6 =(a B ) is calculated from
N

(S"’—S;f)+\[(s;j-s;f)2+4s;;’2

=i 757 b=1K ,B (2) (i)
&=y prx” (2) (i)
where
i n—lz xi‘b , y'b o Z y‘fb
and

ST e Do) e 3 (-5,
After drawing B bootstrap samples, we use the resulting bootstrap estimates

~ a# 2e\T : ~ . A\T
0 = (a’,ﬁ‘) to calculate the standard errors of the estimates 9=(a,ﬂ) ,i.e.

2112

s.e(é) =| ———= where 8 = By "

NONPARAMETRIC BOOTSTRAP CONFIDENCE INTERVALS

In a series of papers, Efron (1979, 1982, 1987) and Efron and Tibshirani
(1993) have developed procedures for constructing approximate confi-
dence intervals for a statistic of interest. The procedures rely on estimating
the sampling distribution of a statistic or an approximate pivot. We shall
consider four popular methods, namely the percentile, the biascorrected
(BC) percentile, the biascorrected and accelerated (BCA), and the iter-
ated BCA methods.
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The percentile method takes the interval 100y and 100(1-y) percen-
. . . . ~% Ak o~k Tes
tiles of the bootstrap distribution of 6 =(a B ) LGy If

G(s) = Pr*{é‘ < s}

where Pr* indicates probability computed according to the bootstrap

=

jad ] * T .
distribution of 0 =(a ,ﬁ) , then 100(1-2y)% approximate interval for
0=(a,B)T is

A— A—1
[G 1(7’)’6 (1“7’)] (5)
The biascorrected (BC) mcthod is given by
[G‘l (2(7) +220),é_1 (2(1-7) +2zo)] ’ (6)

where z, is the bias correction factor and both z and z are standard
normal distribution functions. If z =0, then the BC method reduces to the
percentile method. The disadvantage of both the percentile and the BC
methods is that they have less satislactory coverage properties.

An improved version of the percentile and the BC methods is the bias-
corrected and acceleraled (BCA) method. The BCA has better coverage
properties because it is second-order accurate. This means that for a central
(1-2y) confidence interval (éL-éU) its errors in matching the probability a
of not covering the true value of 6 [rom above (i.e., Pr{@ > GU} = a) or from
below (i.e.,Pr 6> éL} = aP go Lo zero at rate 1/n, for a sample of size n.
The percentile and the BC mcthods are only first-order accurate because
their errors in matching o go to zero at a slower rate, i.e., 1/4/n (Efron
and Tibshirani 1993: 187). The BCA intervals are transformation respecting,
meaning that the BCA endpoints transform correctly if a parameter of
interest § is changed to some function of 6.

In the BCA method the percentiles of the bootstrap distribution are
also used to form the endpoints of the intervals. However, the percentiles
used are now determined by the bias-correction and acceleration factors.
Let a denote the acceleration factor, then the BCA interval with (1-2v)
coverage is given by

[é*(h),é*(h)] -
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where
Yi= ¢_l{zo + (20 + 2(7))/(1 = a(zo + z(’)))}

Ya = ¢_1{zo +(Zo + 2(1_7))/(1 - a(Zo = Z(]_Y)))}

T ¢_l{(no. of 05 < é)/ B}

3

. o 2 3/2 )
0-6) 1 6{%(9@”9—") } By =n" 20,

2
1l
‘Ma
—
D>

where ¢ (.) is the standard normal cumulative distribution function and é_i is
the estimate with the i-th observation deleted.

As pointed out by Efron and Tibshirani (1993), the actual coverage of
a bootstrap confidence procedure is rarely equal to the desired (nominal)
coverage and is often substantially different. One way to achieve the
coverage is by use of calibration. The idea of calibration of the bootstrap
was first discussed by Iall (1986, 1987) and Loh (1987, 1991). Booth and
Hall (1993) discussed the calibrated confidence interval which is also
known as the ilerated conlidence interval in the context of function errors-
in-variables model.

The iterated or calibrated confidente interval can be constructed as
follows; Compute A-level confidence pointg

[636).8;_1®)] b=1x .8 ®)

for a grid of values of . For example, these might be the normal
confidence points

O -zapdd’)  apelE)] o=1x.8
For each A\ compute

P(2) = {no. of < 5;(b)}, B

and

B(1-2)={no.of 62 6]_,(v)}/B
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Find the value of vy that satisfies
P(A)=P(1-A)=a/2

The calibration process can be applied to any bootstrap method. In
this paper we consider the calibration on the BCA method. With the
calibrated BCA method the resulting confidence interval has the desired
properties, i.e., it is second-order accurate, transformation-respecting and
also has the correct nominal coverage.

EXAMPLE

The data are from Miller (1980) and have been analysed by Kelly (1984)
using errors-in-variables model. They consist of simultaneous pairs of
measurements of serum kanamycin levels in blood samples drawn from 20
babies. A heelstick method on umbilical catherer was used to measure the
levels. It was reasoned that the assumption y= 1 was correct, A scatterplot
of these twenty pairs of observations is illustrated in Fig. 1.

30
|

25

catherer

15
Il

heelstick

Fig. 1. Serum kanamycin levels (catherer vs heelstick)
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The estimates based on (2)(i)-(ii) were

-

a=-116, B=1.07

The consistent estimate of ¢% is G%=1.53. The standard error of the
estimated slope and the corresponding 90% confidence interval based on
the exact normal (asymptotic) theory and the bootstrap methods are
presented in Table 1. In bootstrap methods we used B = 1000.

Table 1 displays summary statistics pertaining to the bootstrap analy-
ses. The bootstrap standard error is relatively close to that of the normal
theory. Two propertics associated with all the confidence intervals are
their lengths and shapes, respectively (Efron 1987).“Shape” measures the
asymmetry of the interval about the point estimate. An interval is said to
be symmetrical if shape = 1. Shape > 1 indicates asymmetry with greater
distance from the upper limit to the point estimate than from the point
estimate to the lower limit. The bias-corrected interval is shorter than the
other intervals and the iterated BCA produces the longest confidence
interval among those considered. All the confidence intervals, except the
iterated BCA, indicate some dcgree of asymmetry with greater distances
from the upper limits to B than from f to the lower limits.

TABLE 1

Standard errors of ,B and 90% confidence interval for B

Standard error of B

Exact (normal-thcory) 0.160
Bootstrap (B=1000) 0.182

90% Confidence Interval for

Lower  Upper Length  Shape

Exact (Normal-theory) 0.811 1.418 0.607 1.347

Percentile 0.797 1.420 0.623 1.281
BC 0.855 1.438 0.583 1,713
BCA 0.871 1.493 0.622 2.130
Iterated BCA 0.710 1.493 0.783 1.178

Tables 2-4 illustrate the exact (normal-theory), the percentile, the BC,
the BCA, and the iterated BCA confidence intervals for the slope parameter.
The exact confidence interval is given by (4) and the bootstrap intervals are
given by (5)-(8), respectively. Tabulated characteristics for confidence inter-
vals are average values of lower and upper endpoints, lengths, shape, and
also estimated coverages of the intervals (with nominal coverage 90%).

356 Pentanika J. Sci. & Technol. Vol. 3 No. 2, 1995



On Bootstrap Methods in Orthogonal Regression Model

It is clear from Tables 24 that in most cases the percentile, the BC,
and the BCA intervals suffer from moderate undercoverage when the
underlying population is non-normal. The exact confidence intervals also
suffer from moderate undercoverage even in the case of normal popula-
tion. The strength of the iterated BCA method is that it yields confidence
intervals that have coverage equal to the desired nominal 90% coverage.
However, the iterated BCA intervals tend to show some degree of asymme-
try and are slightly longer than the other intervals.

TABLE 2
Exact and bootstrap confidence intervals, n=20
Error-distr. Method Lower Upper  Length Shape Coverage
Normal Exact 0914 1.108 0.194 1.102 0.85
Percentile 0.907 1.097 0.189 1.167 0.90
BC 0.903 1.090 0.187 1.034 0.90
BCA 0.888 1.094 0.207 1.116 091
Iter. BCA 0.891 1.130 0.239 1.214 0.90
D-exp. Exact 0.918 1412 0.194 1.102 0.92
Percentile 0918 1.101 0.127 1.127 0.87
BC 0.916 1.098 0.182 1.109 0.84
BCA 0.919 1.100 0.181 1.169 0.84
Iter. BCA 0.902 1.136 0.234 1.197 0.90
t(3) Exact 0.862 1.227 0.364 1.197 0.87
Percentile 0.853 1.213 0.360 1.202 0.87
BC 0.859 1.210 0.355 1.163 0.85
BCA 0.853 1.210 0.357 1.216 0.88

Iter. BCA 0.817 1.320 0.502 1.486 0.90

CONCLUSION

The existing methods for evaluating the statistical accuracy of estimates of
the parameters of orthogonal regression model are largely asymptotic and
may not apply in finite samples. The nonparametric bootstrap method has
facilitated the evaluations of standard errors and confidence intervals for
the parameters of the model. A limited simulation study presented in this
paper shows that the iterated BCA method, in particular, provides a
reliable method for constructing a nonparametric confidence interval.
The method produces a confidence interval that has the most desirable
properties, i.e., it is second-order accurate, transformation-respecting, and
has a correct nominal coverage.

Pertanika J. Sci. & Technol. Vol. 3 No. 2, 1995 357



Mokhtar bin Abdullah

TABLE 3
Exact and bootstrap confidence intervals, n=30

Error-distr.  Method Lower Upper Length Shape Coverage

Normal Exact 0.942 1.043 0.101 1.052 0.87
Percentile 0.952 1.048 0.096 0.988 0.89
BC 0.951 1.047 0.096 0.973 091
BCA 0.944 1.049 0.104 1.051 091
Iter. BCA 0.935 1.067 0.132 1.123 0.90
D-exp. Exact 0.951 1.052 0.102 1.052 0.90
Percentile 0.952 1.051 0.099 1.028 0.89
BC 0.948 1.048 0.100 0.951 0.85
BCA 0.941 1.051 0.110 1.025 0.85
Iter. BCA 0.937 1.065 0.128 1.068 0.90
t(3) Exact 0.951 1.051 0.186 1.097 0.89
Percentile 0911 1.095 0.183 1.031 0.84
BC 0912 1.096 0.183 1.061 0.84
BCA 0.900 1.099 0.200 1.138 0.86

Iter. BCA 0.889 1.130 0.241 1.118 0.90

TABLE 4
Exact and bootstrap confidence intervals, n=50

Error-distr. Method Lower Upper  Length Shape Coverage
Normal Exact 0.978 1.025 0.047 1.024 0.84
Percentile 0.979 1.023 0.044 0.960 0.86
BC 0.979 1.023 0.044 0.010 0.83
BCA 0.968 1.024 0.063 1.050 0.83
Iter. BCA 0.970 1.028 0.058 1.061 0.90
D-exp. Exact 0.978 1.024 0.046 1.023 0.94
Percentile 0.979 1.022 0.043 1.142 0.88
BC 0.976 1.019 0.044 0.877 0.86
BCA 0.928 1.020 0.092 1.886 0.85
Iter. BCA 0.974 1.032 0.057 1.186 0.90
t(3) Exact 0.958 1.040 0.082 1.042 0.88
Percentile 0.959 1.035 0.076 1.000 0.87
BC 0.959 1.035 0.076 1.022 0.87
BCA 0.951 1.037 0.085 1.114 0.90

Iter. BCA 0.949 1.050 0.101 1.085 0.09
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