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ABSTRAK

Sistem persamaan polinomial-fungsian tertentu yang dijanakan daripada sifat­
sifat biasa pembezaan diperhatikan. Penyelesaian sistem ini ke atas medan dan
bentuk kanonik mereka relatif terhadap kesetaraan natural diberikan.

ABSTRACT

Systems of some polynomial-functional equations, which are derived from the
usual properties of derivative, are considered. Solutions of these systems over
a field and their canonical forms relative to natural equivalences are given.
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INTRODUCTION

Let R be a commutative, associative algebra over a field F of characteristic zero,
d: R ~ R be a derivative i.e. d is an additive map and d(ab) = d(a)bt ad(b) for
any a,b E R The last equality means that to know the derivative of a product it
is enough to know the derivatives of the factors because of polynomialness d(ab)
in a, b, d(a) and deb) over F. If for a while we denote d(xy) as a polynomial j[x,
y, d(x) , dey)] then the equality d((xy)z)= d(x(yz)) draws in the equality

j[xy, z, j[x, y, d(x), dey)], d(z)]=j[x, yz, d(x), j[y, z, dey), d(z)]],

the equality d(xy) = d(yx) draws in the equality

j[x, y, d(x) , dey)] = j[y, x, dey), d(x)]

Therefore the following problem is natural: Let XI,X2,X3,X4,XS,X6 be indeterminates
over the field F. Find all such polinomials j[XI,X2,X3,X4] over F for which the
following system of polynomial-functional equations is valid.

{
J[X1X2, x3' J[x~ x2 ' x4 ' xJ, x6] = J[x J , X2X3' x4 ' J[x2,x3' xS' x6]]

J[X I X2 ,X3,X4 ] - J[X2 ,XI'X4 ,X3] (1)

The paper deals with this problem. To follow the proofs of the results below
one needs only some basic notions on polynomials, which can be found nearly
in any text book on algebra e.g. in (Waerden 1991).
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Lemma. The first polynomial-functional equation of system (1) has only the
following solutions in F1x\,X2,X3,X

4
]:

k

f = L.ai(x1x2)i ,wlUffe kEN u 10l and ai E F;
;=0

k

f= x;x4 + L.ai(x; -x~)x;, where k, n E N u 10l and ai E F;
;=0

k

" ~ i(" i) if= X2 X; + LJaix , X2 -X2 x2 where k, n E N u 101 and aj E F;
;=0

f= x;"x
4

+ X~'X3 + ax;"x;, where m,n E N u 10}, m :f. n and a E F;
k

f= x'\x4 + x"2 X3 + L.aj(x~x; +x;x~ -x:x~),
;=0

where k, n E N u 10j and a j E F;

1
f = g[x\] x

4
+ g[x2]x3 + ax3x3 + ~(g[x\ ]g[x2]- g[X IX2]- g[X IX2])

where g[x\] E F [XI] and a E F* = F\ 101.
Proof of lemma. Let f E F [x\,x2,x3,x4 ] be a polynomial for which the first

equality of (1) is valid. Comparing degrees on the left and the right sides of this
equality in x

4
(x6) as polynomials over F [x\,X2,X3,X

S
,X6]

(corresp. F [x\,X2,X3,X
4
,XS ]) one has inequality

Due to this

(2)

where ./;Tx\,x2] E F1x l , x2]· Considering the first equality of (1) as an equality of
polynomials in x4' xs' x6 over F1x1,x2,x3] it can be written as the following system
of equalities (3)

f [xl' x21fo [x\x2, x31 = for x2' x31for xI' x2x31

fJx ,x21for X1X2,x31 = f2[ x2' x31for xI'x2x31

f2[ xI' x21for x\x2' x31 = fo [x2, x3 1f2 [xl' x2x31

for x\, x2l fJ X1X2' x31 = for xI' x2x31fJx2' x31

j;fxI' x2l fJ x\x2' x31 = for xI' x2x31f3[ x2' x31 + f.JXI' x2x31

j;fx\x2, x31f2[xl' x2l = fJx2, x31f2 [xl'x2x31

fo[x\x2,x31A[xl'x21 + f2[x\x2, x31 = f2[x2,x31f2[xl'x2x31

f3[ xI' x21fJ x\x2' x31+A[x\x2' xJ= f2[ xI' x2x31f3[ x2' x31+ f3[ xl'x2x31
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Comparing degrees on the left and the right sides of the first equality of this
system in XI and x3 one gets fo E F

Let us consider first the fo = 0 case. In this case the 5th (7 th ) equality of the
above system shows that .Mxl , x2] (corresp. .Mx l , x2]) does not depend on XI

(corresp.x2) i.e'.J;[xl , x2]= J;[x2] (corresp·.Mx l ,x2] =.Mx
l
] ). Moreover J;[x

2
]= aX;;

(lcorresp ..Mx
l
]= bx~), where a (corresp. b) is 0 or 1 and n (corresp. m) E N

ulOl. In this case system (3) reduces to the equality

If a = b = 0 then equation (4) has only the following solutions

k

.{g[XI,X2] = L,a(xlx2)jwhere kEN u 10) and aj E F
;=0

and therefore in this case due to (2) one has

k

J= .{g[XI,X2] L,a(x\x2)j, where kEN u 10! and ajE F
;=0

If a = 1,b = 0 then equation (4) has only the following solutions

k

.{g[XI,X2] = L,ajx:(x; -x~), where kEN ulO) and ajE F
j ..

and therefore in this case due to (2) one has

k

J = X;;x
3
+ L, ajx; (x; - x~), where k, n E N u (01 ajE F

j ..

If a = 0, b = 1 then equation (4) has only the following solutions

k

A[xl'x2 ] ="" aj(x;n -x:)x~, where k NU10) and a. FIL.J E IE
;=0

and therefore in this case due to (2) one has

k

J = X~X4 + "" aj(x~ - x;)x~ where K m NU10j and a. FIL.J ' 'E IE
;=0
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k

f~[Xi' X2 ] =L aJx;n - x: )x~, where
;=0

If a = b = 1 and n :;; m then equation (4) has only the following solutions

and therefore in this case due to (2) one has

f = X-;x
4
+ X;x3 + cX-;X;, where m, n E N u 101, and c E F

If a = b = 1 and n = m then equation (4) has only the following solutions

k

h[x"x2] = L aj(x:x; + x~x~ - x:x~),
;=0

where kEN u 10) and aj E F and therefore in this case due to (2) one has

k

f= X;x4 + X;x'l+ Laj(x:x;+x~x~-x:x~),
;=0

where k,n E N u 101 and ajE F
Let us now consider the fo :;; 0 case. In this case the second equality of

system (3) shows that.t;[x"x2 ] =.J;[X2,X3] i.e. g[x2] =};[x"x2] =.J;[X2,X3]. Moreover
due to the 5th equality of (3) one has

and after this fact the other equalities of (3) become identities. Thus in this
case one has

f= g[x,]x
4

+ g[X
2
]X

3
+ ax

3
x

4
+ ~ (g[X1]g[X

2
] - g[x,x

2
]) , where g[x] E F[x] and

a

a E F*. The proof of lemma is completed.
Now it is easy to list all solutions of system (1). To do this it is enough to

choose only those polynomials from the list presented in the lemma for which
the equality

holds. Let us present the result as the following theorem.
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Theorem 1.

System (1) has only the following solutions in F [XI' x2' x
3

' x
4

]:

,
J= L.a(x\x2)j, where kEN u {OJ and ajE F,

;=0

where k,n E N u {OJ and ajE F,

where g[x] E F[x] and a E F*.
One can check by direct calculation or use Theorem 1 be sure that ifJ is a

solution for system (1) then

is also solution for system (l)for any a E F* and p[x] E F[x]. In other words
the set of all solutions of system (1) is invariant with respect to the following
action of the group G\ = F* t>< F[x] on it:

It correspondence to the fact that if d: R -7 R is such an operation that d(xy)
is a polynomial in x, y, dx, dy over F and a E F*, p[x] E F[x] then 8 (xy) is also
a polynomial in x, y, 8x, 8y over F, where 8 = ad + p i.e. 8(x) = ad(x) + p[x] by
definition.

The following result gives the "simplest" forms of d(x
1
x

2
) with respect to that

action.

Theorem 1,.

With an accuracy of the above action of group G\ there are only the following
equalities:

1) d( XI x
2

) = 0, which corresponds to J = 0,
2) d(x\x2) = d(x,)x>;+ X~d(X2)' where n in N u {Ol, which corresponds to

J = x3X; + X;x4 ,

3) d(X
1
X2) = d(x,)d(x2), which corresponds to J= X3X

4
•
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Proof of Theorem r. If

k

d(x,x
2

) = 2,a;(x1x2 ); , where kEN u IOl and a;E F
j:O

•
then for 8 = d + p, where p[x]= 2,ajx; one has 8 (x,x

2
) = o.

;=0

If

•
d(x,x2) = d(x,) X;; + X;d(x2) + 2,aj(x;x;+x;'x~-x;x~),

;=0

k

where k, n E N u {OJ and ajE F, then for 8 = d + p, where p[x]= 2,a;x
j

,

;=0

If

where g[x] E FIx] and a E F*, then for 8 = ad + p, where p[x] = g[x] , one has
8 (x,x

2
) = 8 (XI) 8 (x2). This completes the proof of theorem 1·.

If in addition the operation d: R ~ R is an additive map then the equality
d«x+y)z) = d(xz) + d(yz) draws in equality

f[x+y, z, d(x)+ d(y) , d(z)]=f[x, z, d(x), d(z)]+ jIy, z, dey), d(z)].

Therefore finding the solutions of the following system

I

f {x,x2' x3 ' f {X":2' x4 ' x5 }, x6 } = f {x" X 2X3 ' x4 ' f {x2' x3 ' x5 ' x6 }}

f{X"X2,X3 ,X4 } - f{x2,x"X4 ,X3 }

f{x, + XZ,X3 ,X4 + x5'x6 } = f{X"X3 ,X4 ,X6 } + f{X2,X3 ,X5 ,X6 }

of polynomial-functional equations is natural.

Theorem 2.

System (5) has only the following solutions in F [x" x2' x3' x4]:

f = ax,x2, where a E F
f = x,x

4
+ X2X

3
+ ax,x2, where a E F

b(b -1) *
f= ax

3
x

4
+ b(x,x4 + X2X3) + x,x2' where a E F, bE F

a

(5)
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ProoJ oj Theorem 2. To prove this theorem the obtained solutions of system
(1) can be used. But here we offer an easier way: Indeed, due to (2) the 3rd

equality of system (5) can be written in the following equivalent form:

I
JO[X\ + x2'xg] = Jo[xl'xg]

JJ x\ + x2J xg] =JJx!' xg] = j;fx2J xg]

J2[X\ + X2J xg]: J2[XI'Xg] + J2[X2J Xg]

Jg[x, + X2J xg] - Jg[x'JXg] + Jg[x2J Xg]

The first (second; third; fourth) equality of this system means that !o[x\,x2]=
&[x2] for some &[x] E FIx] (corresp. J; [x

J
,x2] = g) [x2] for some g) [x] E FIx];

.J;[x
j
,x2] = x

J
g2[X2] for some g2[X] E FIx]; h[X1,X2] = x

J
gg[x2] for some gg[x] E

FIx]). In other words one has

Afterwards due to the 2nd equality of system (5) one has

I
gO[X) =go[x2] i.e. go[x] = a E F

gJx2] = x2g 2[X\]

X\g2[X2] =gJx)

X1gg[X2] = x2gg[x] i.e. gg[x] = for some c E F

The 2nd and 3rd equalities of the last system imply i[x]= bE F, g\ [x] = bx.
Therefore

Now it is easy to see that for such J [X1,X2,Xg,X4] the 1st equality of system (5)
is valid if and only if

This completes the proof of theorem 2.
One can check by direct calculation or use Theorem 2 be sure that if Jis a

solution for system (5) then
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is also solution for system (5) for any a E F* and C E F. In other words the
set of all solutions of system (5) is invariant with respect to the following action
of the group G

2
= F* [>< F on it:

It correspends to the fact that if d: R ~ R is such an additive operation that
d(xy) is a polynomial in x, y, dx, dy over F and a E F*, CE F then 8 (xy) is also
a polynomial in x, y, Ox, oy over F, where 8 = ad+ Ci.e. 8(x) = ad(x)+ cx by
definition, moreover 8 is also an additive operation.

The following result gives the "simplest" forms of d(x
1
x

2
) with respect to that

action.

Theorem 2,.

With an accuracy of the above action of group G
2

there are only the following
equalities:

1) d(X
I
X

2
) = 0, which corresponds to f = 0,

2) d(X
I
X

2
) = d(XI )X2+ x1d(x2), which corresponds to J= X

3
X

2
+ X

I
X

4
'

3) d(X
I
X

2
) = d(x

l
)d(x

2
), which corresponds to J= X

3
X

4
•

ProoJ oj Theorem 2·. If d(xl ,x2
) = CX1X2 where CE F then for S = d-c, one has 0

(XIX2) = 0.
If d(X

I
X

2
) = d(X1)X2 + x1d(x2) + CXI X2' where CE F then for 0 = d + Cone has

o (X
I
X

2
) = 0 (X

1
)X

2
+ X10(X2)

_ b(b -1) *IfJ [X
I
,X

2
,X3,X4] - ax3x4 + b(X1X4 + X2X3) + X

1
X

2
' where a E F then for

a
0== ad + b, one has 0 (X1X2) = 0 (Xl) 0 (x2). This completes the proof of theorem
2'.

Theorem 2· can be considered as a confirmation of special positions of
differential operators and homomorphisms in theory of commutative associative
rings. Roughly speaking, Theorem 2· says that they exhaust all additive maps d:R
~ R for which d(xy) is polynomial in x,y,d(x),d(y).

Of course an analogical problem can be considered for other types of
algebras, for example, associative algebras, Lie algebras or, in general, polynomial
algebras (Procesi 1973). It would be interesting to investigate this problem for
associative algebras.
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