Enzymatic interesterification on the physicochemical properties of Moringa oleifera seed oil blended with palm olein and virgin coconut oil

ABSTRACT

The enzymatic interesterification (IE) of palm olein (PO) and virgin coconut oil (VCO) with the high oleic acid (86%) Moringa oleifera seed oil (MoO) could yield a good source of oleic acid fat stock that may contain desirable nutritional and physical properties. Lipozyme RMIM resulted in different functionalities for the MoO/PO and MoO/VCO blends due to inherent changes in triacylglycerol (TAG) compositions which, in turn, led to different trends in DSC thermograms and solid fat contents (SFC). The enzymatic IE of MoO/VCO increased U2S and S2U (up to 20% medium and long chain, MLCT) while it decreased U3 (triunsaturated) and S3 (trisaturated) TAGs. The IE of the MoO/PO blends increased U2S and S3 (MMP, myristic, myristic, palmitic) and decreased S2U, resulting in a lowering of melting points and SFC for MoO/VCO, while showing an increase in them for MoO/PO. A 2.55% increase in S3 after 24 h MoO/PO 30:70 IE revealed a 6.5% harder oil at 10 °C which may imply a wider application compared to the original liquid oils. Novel MLCTs with improved nutritional and physical properties were generated in the MoO/VCO blends after IE due to the incorporation of oleic acid and medium chain fatty acids. MoO/PO 50:50 and 70:30 w/w after 12 h IE and MoO/VCO 30:70 are suitable for incorporation into the fat phase in ice-cream formulations while, the spreadability and plasticity of MoO/VCO 70:30 improved at low temperatures. Both interesterified blends could be used as high oleic acid frying oils.

Keyword: Interesterification; Lipozyme RMIM; Moringa oleifera seed oil; Physicochemical properties; Structured lipids