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ABSTRACf

This paper proposes a nonlinear variable gain Proportional-Derivative (PD) controller
that exhibits self-constructing and self-learning capabilities. In this method, the
conventional linear PD controller is augmented with a nonlinear variable PD gain control
signal using a dynamic structural network. The dynamic structural network known as
Growing Multi-Experts etwork grows in time by placing hidden nodes in regions of the
state space visited by the system during operation. This results in a network that is
"economic" in terms of network sileo The proposed approach enhances the adaptability
of conventional PD controller while preserving its' linear structure. Based on the
simulation study on variable load and friction compensation, the fast adaptation is shown
to be able to compensate the non-linearity and the uncertainty in the robotic system.

Keywords: Nonlinear PD Controller, feedback error learning, dynamic structure neural
network, friction compensation, variable load compensation

INTRODUCTION

Since their inception over thirty years ago, industrial robots have been widely used in
industry. Despite a large number of sophisticated robot control methods reported in the
robotics and control literature, linear PD controller is still one of the commonly used
controllers in commercial industrial robots. Robot manipulators have highly nonlinear
dynamics. Since the robot dynamics is nonlinear while PD control is a linear-eontrol,
applying PD control to trajectory-following problems would require a gain scheduling
approach using local models; that is the robot dynamics is linearized about some
operating points so that the PD gains can be selected to achieve certain performance
specifications. The trajectory, however, varies with time (as opposed to a set-point).
Therefore, the gains so selected may not be appropriate due to the linearization. Such
a predesign needs significant effort and a priori robot model information, and cannot
adapt itself to model error or time variation in an on-line manner. The limitations
mentioned above have inspired the idea of model free self-adaptive independent joint
controller proposed in this paper. The basic challenge of designing a model free self­
adaptive controller is how to provide an on-line learning algorithm that does not require
preliminary off-line learning. Instead, the controller is able to automatically improve its
performance on the fly even when the robot model is unknown or partially known. This
shares the idea of universal model-free controllers such as neural networks. Therefore,
a neural network based feedforward controller that exhibits self-eonstructing and self­
learning capabilities is presented in this paper.
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Fig. 1: Two dimension input space divided by grids. Basis Junctions are located on the mesh points.
The bold arrow indicates the input slate trajectory. It is noted that basis Junctions

positioned along the trajectory are active, the Test are innate and redundant

Problem

Until the beginning of the nineties, the principal type of neural networks used for
system identification and control problems was the multilayer perceptron (MLP) with
sigmoidal hidden units in Psaltis et al.(1988); Khalid et al.(1992). However, slow learning
and local minima problem of MLP have led to the development of modular neural
networks such as the radial basis function (RBF) neural networks Kadirkamanathan
et at. (1993). The RBF network has gained increasing attention among researchers owing
to its modular structure and fast learning capability. With the use of Gaussian functions,
the RBF network forms a local representation. Each basis function responds only to

inputs in the neighborhood of a reference vector known as basis function center. The
spread of the neighborhood is determined by the variance of basis function. In using
RBF networks as neural network based controller, one typically initializes the center of
the basis functions on regular points of a square mesh covering a relevant region of
space where the input state is known to be contained, and denoted by a compact set

X. c9t'. This approach is widely used in robotic control application Ge (1996); Ge et
at. (2001); Ge et al. (2002a); Ge et at. (2002b). This situation is also encountered in
system identification problems, where the state components represent delayed versions
of the plant output response. Therefore, state variables move along specific trajectories
within the state space, X.' depending on the excitation conditions of the model. This
implies that placing basis functions on all mesh points within X. results in a lot of
redundancy. Fig. 1 illustrates this problem.

Nevertheless, even assuming that the basis functions are placed along the trajectory,
they may be positioned close to each other owing to network adaptation. It is illustrated
in Fig. 2. Fig. 3 indicates that the basis function A appears to be redundant since basis
function A may produce a response amplitude similar to basis function B for an input
signal x. Under this situation, either basis function A or B alone is able to perform the
approximation sufficiently well for the covered region.
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Fig. 2: Two basis functions are placed close to each other. One of them appears to be redundant
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Fig. 3: Gaussian basis functions that are close to each other have similar amplitude
corresponding to the input signal near to the Gaussian center

Overall, the applicability of modular neural network with static structure and using
basis function is limited by the following issues:
• For a system identification or control problem, the initialization of Gaussian basis

function based on mesh grid method may result in redundancy.
• Gaussian basis functions that are located close to each other may result in redundancy

since they may generate similar activation values corresponding to an input signal
close to their center.

In this paper, it is proposed to adaptively place the basis functions in the strategic
regions in order to cope with the problem of a large number of redundant basis
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functions. This results in a much smaller network in structure. In order to differentiate
two closely positioned Gaussian basis functions, the concepts of "expertise level" and
"expertise domain" are introduced into the network design. It is illustrated in Fig. 4.
Based on this idea, two closely positioned Gaussian basis functions may share similar
expertise domain but they may have different expertise levels. The expertise level
indicates the significance of their contribution to approximate the region they recover.
It is, therefore, possible to detect the redundancy by monitoring their expertise level
value. Low expertise level indicates the basis function redundancy.

432o-1

--~_ 0.6

~ 0.5

§. 0.4
w

0.3

0.2

0.1

o -F--"-'"-1r-'-=---=-------,---...,------'T--'-~'---_,.._--..,__-____=j

~

0.9

0.8

0.7

expertise domain

Fig. 4: Gaussian basis functions gated IJy a scaling factUT to indicate their expertise level

In this paper, it is proposed to augment the conventional PD controller with a
feedforward control signal using a dynamic structural network known as Growing Multi­
Experts etwork Loo et al. (2000); Loo et al. (2003). The dynamic structural network
grows in time by placing hidden nodes in regions of the state space visited by the robot
during operation. This results in a network that is "economic" in terms of network size.
The attractive feature is that using dynamic network structure in neural control design
results in a much smaller network and effective utilization of basis function with reduced
storage and computational requirements. The adaptation capability of the network is
shown to be able to compensate for the uncertainty of the robot dynamic model.

Growing Multi-Experts Network (GMN)

Control and modeling problem involves approximation of an unknown nonlinear
function. In nonlinear systems the function complexity varies throughout the input
space. Instead of trying to approximate the whole function globally, the input space is
partitioned into subspaces that are easier to handle. This may be achieved by effectively
using 'divide and conquer' strategy where the problem space is decomposed into
overlapping regions and local experts approximate the function in every region. In this
context, the problem space decomposition requires a gating unit that may clearly define
the zone of influence of local experts.

The local experts are associated with a weighting factor that indicates the importance
of each local expert. Finally, the network overall output is computed by combining the
outputs from all the local experts.
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Fig. 5: Growing Multi-Experts Network architecture. N is the normalization symbol

Overall, GMN consists of three main building modules namely, expertise domain,
expertise level, and local experts. Local experts may have a nonlinear function, linear
function or even a mixture of both. In this paper, a polynomial function, mainly a linear
model, is considered. Expertise domain is used to define the influence regions where
the local experts perform local approximation. The competency of local experts is
indicated by expertise level. High value of expertise level means the local expert is
making significant contribution to the overall network output. Fig. 5 shows the Growing
Multi-Experts etwork architecture. The design of these three modules and the learning
algorithm of GMN are described in detail in the following sections.

Expertise Domain

Gaussian basis functions have localized receptive fields. With this property, the Gaussian
basis function is obviously a suitable choice for an expertise domain gating function to
indicate the validity of input data with respect to the local expert model. The distance

metric d(x; c.,cr.) for Gaussian basis function k as defined in equation (1) can scale the

spread of the Gaussian basis function relative to its center cr. and the Gaussian basis

function takes the distance metric as input and cr. as diagonal matrix.

(1)

(2)

Expertise Level

When two expertise domains (Gaussian basis functions) are located do~e to each other,
there will be a high degree of overlapping. As a result, one of the local experts associated
with the expertise domains may appear to be redundant. In such a case, a single local
expert is sufficient to approximate the desired function within the expertise domain. In
order to avoid such a redundancy, expertise level gating function is introduced to
denote the importance of the local expert model so that the unimportant local expert
may be deleted. Each expertise domain is multiplied by a weighting factor a. known as
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Fig. 6: Gaussian basis function used as expertise domain gating module

expertise level function. It is noted that a, must also be a non-decreasing function of an
adjustable parameter 13.. Smoothness of expertise function is also required because it is
necessary for the gradient-based learning method. In addition, function a, must be
nonlinear because otherwise, it may be absorbed by local model function. To satisfy
these requirements, the weighting factor a, is defined as a logistic sigmoid function so
that a, is bounded (0 < a, < 1) for any real value of 13, where 13, is an adjustable parameter

1
a=--­, l+e-P, (3)

The expertise level function is then multiplied by expertise domain function. Since the
value of a, is bounded (0 < a, < 1), the peak value of expertise domain (Gaussian basis

function) Ilk(d(X;Ck,Ok» is gated by a weighting factor a.. Therefore, the peak value of
expertise domains varies according to the changes of 13, in accordance with the
importance of their contribution to the overall network output.

Fig. 7 shows the effect of varying control parameter 13 on the peak value of expertise
domain. In GMN, the initial value of 13 is always set to zero and it is subject to error-based
learning. The slope of expertise level function a(f3) is the greatest in the mid-range in
the vicinity of 13 = 0.5. Near both extremes, the slope diminishes asymptotically towards
zero as depicted in Fig. 8. Therefore, the expertise level value is sensitive to the onset
of learning, which exhibits fast learning capability at the initial stage. This is closely
similar to the learning curve of a human being.

Partition of Unity

For modeling tasks the expertise domain (Gaussian basis functions) should form a
partition of unity for the input space, i.e. at any point in the input space, the sum of all
expertise domains should be unity. This is an essential requirement for the network to
be' able to globally approximate any desired function as complex as the local expert
model. The partition of unity also ensures that any variation in output over the input
space is due only to the local expert model. Therefore, the gated expertise domains are
normalized to achieve the partition of unity.
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a.-Il.(d( x;c. ,0.))
(4)

where Il. (d(x; c.,o.)) is the general unnormalised expertise domain, therefore the m

normalized expertise domains <I>,(x) sum to unity.

(5)
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Normalization is very important for GMN, often making the GMN model less
sensitive to the poor choice of Gaussian basis function parameters Werntges (1993).
The normalization procedure is depicted as block 'N' in Fig. 5.

Local Expert Model

Growing Multi-experts Network utilizes a group of local expert models to perform
function approximation. The approximation capability of GMN is dependent on the
choice of local expert models. Local expert models may be a constant model, linear
model, polynomial model or even a nonlinear model. Linear function is chosen as local
expert models in GMN architecture. Linear models, although very restricted in their
representational ability, are useful for a large range of problems. This is due to their
simple representation, their ease of interpretability, and their robustness against noisy or
missing data. It makes sense, therefore, to include the ability to at least be able to form
a linear model within the expertise domain. The linear model is expressed as follows:

- T-e,(x) =x .b, + bo., (6)

where b, and bo" are adjustable parameters of the local expert and x; is the input vector.
Each local linear model is associated with the normalized gated expertise domain, The
overall output of the GMN is described as given below:

(7)

The contribution of each local expert model is determined by the validity of the
input data to the expertise domain. The magnitude of contribution is further gated by
expertise level. In general, the expertise level may be an indicator of local expert
redundancy. On the other hand, the overlapping of expertise domain allows the smooth
combination of local expert outputs to produce a smooth approximation. The trained
network structure is viewed as a decomposition of the complex, nonlinear system into
a set of locally active sub-models which are then smoothly integrated by their associated
expertise domain and expertise level. The next section will present the learning
algorithm of GMN.

Local Expertise Insertion based on Certainty Factor

Certainty factor was introduced by Buchanan and Shortlife (1985) for a medical
diagnostic system. Donald K. Wedding II and KrzysztofJ. Cios conducted a comparative
study of this method and the other technique for measuring RBF reliability Wedding et

al. (1995). Certainty factor can be generated by GMN networks by using the I-J.{d(x;c ,cr))
values from the expertise domain. Referring to Equation (2), it is obvious that this
function returns values between 0.0 and 1.0 in the same range as allowed by certainty
factors.

When the output I-J.{d(x;c ,cr)) of an expertise domain is high (near 1.0), then this
indicates that a point lies near the center of a cluster and therefore the network is
confident about the prediction. A value of 1.0 exactly indicates that the data falls directly
upon the center of an expertise domain. A value that is very small (near 0.0) will lie far
outside the expertise domain, so the network is most likely to perform extrapolation. In
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this scheme, N values of ).L(d(x;e ,8» are generated, one for each of the local experts in
the hidden layer of the GMN network. The following equation is used to calculate the
certainty factor using the recursive formula Wedding (1995).

(8)

In this equation, the value of i refers to the number of local experts that will be used
to determine the certainty factor of the GMN network. In general, the value of i should
be set to N (the number of local experts in the hidden layer), but it can also be set to
a lower value if computational time is critical to the application. The term CF

r1
refers

to the certainty factor of the network using only i-I nodes to calculate the confidence
level. The value of CFo (the certainty when local experts in the hidden layer are used)

is defined to be 0.0. Lastly, the term max,().L(d(x;e,8») is defined as the ith largest value

of ).L(d(x;e,8». So, max,().L(d(x;e,8») would mean the largest value of ).L(d(x;e,8» and

max
2
().L(d(x;e ,8») would be the second largest value of ).L(d(x;e ,8» .

On-line GMN Identification Algorithm

For online identification application using RBF network, a recursive algorithm is
required for the learning process of GMN network. For an effective adaptive identification
scheme, the learning process requires allocation of new local experts depending on the
inputs as well as network parameter adaptation. The algorithm is explained as follows:

The network begins with two local experts that are initialized randomly. As observations
are received some of the input data will be taken as the new local experts. The following
two criteria decide whether an input x should be added to the hidden layer of the

n ,

network:

erasn =

CF,(n) :0:;; €if

,--------

L~=._(M-,)[y(i) - y(i)Y
M

If the criteria above are fulfilled, then allocate a new local expert with

a"... = 0
'11_ = 0

(9)

(10)

c., is the center of a local expert whose distance from the incoming input feature x. is
the nearest among those of all the other local experts. The spread of new expertise

domain is calculated as the average distance of Nb neighborhood local experts from e~.

PertanikaJ. Sci. & Techno!. Supplement Vo!. 12 0.2,2004 147



Loo Chu Kiong, Mandava Rajeswari, Wong Eng Kiong & M. V. C. Rao

If the criteria above are not fulfilled, then

-, -,_I [( aE'-' ) (-,_I -,-2)]
C, = ci + 11; - ac;-I + 1]cM' c, - c,

0' =0,-1 +11 .[(- a~'-I )+ TJ '(0'-' _ 0'-2)]
I I a aa;-l "aM I I

[(
aE'-I) ]a' = a,-I + 11' - --.- + TJ {a'-I - a'-2)

I I a aa;-l . laM I I

- 1 r- p,-I·Xn. _,T.p,_I
T

]P' = _. p,-I _' X,
, " A T-

II. _ + x' p'-I-'
<1>: I x

(11)

(12)

(13)

(14)

(15)

The expertise domain center Ci , the expertise domain spread 8, and the expertise

level a, are learned using momentum-based gradient descent method where 11" 110' 11a
are learning rates and 11

0
\1' 11aM' 11aM are momentum rates. The local expertise linear

models are learned by Forgetting Weighted Recursive Least Square learning algorithm

Ljung (1983). The initial parameter vector iP,(O) is set as zero. The initial covariance

matrix P(O) is assigned as one. To cope with changing environment, in general, A. is set
a value within 0.9 < A. < 1. For 8,ulLte consecutive observations, if the normalized expertise
level of local expertise model is below the average expertise value, then prune the
respective local expert.

r. 1---<-• mIr.
k=l

m is the total number of local experts.

(16)

Robot Arm Dynamics

A robot manipulator is typically modeled as a serial chain of n rigid bodies. In general,
one end of the chain is fixed to some reference surface while the other end of the chain
is free, thus forming an open kinematic chain of moving rigid bodies. The vector
equation of motion of such a device is written in the form:

D(q)q +C(q,q)q + G(q) = To (17)

This vector equation represents the dynamics of an interconnected chain of ideal rigid
bodies, where is the vector ofjoint actuator torques and is the vector of generalized joint
positions. It is a matrix, usually referred to as the manipulator mass matrix containing
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the kinetic energy functions of the manipulator. It represents torques arising from
centrifugal and Coriolis forces caused by gravitational effects when the manipulator is
moving in its work space. In general, equation (17) is very complicated for all but the
simplest manipulator configuration. The matrices in equation (17) have distinctive
properties Lewis et al. (1993) that are the direct results of the application of the Euler­
Lagrange method of formulating the dynamic equations of the manipulator system.
Properties such as symmetry, boundedness and positive definiteness enable the exploitation
of the manipulator model to design a model based control law for tracking control
applicatiori properties Lewis et al. (1993). The resulting control law generates actuator
torques that cause the manipulator to follow a desired trajectory in its workspace while
maintaining small tracking errors. Ideal performance is achieved only when complete
knowledge of manipulator model is available. However, in reality, model uncertainty is
inevitable even when the best effort has been put into the analysis and derivation of the
dynamic model.

Nonlinear Variable Gain Proportional-Derivative (PD) Controllers

In general, the linear discrete-time PD controller can be written as

(18)

Now, we rewrite equation (7) to represent the general GMN controller in the
following manner:

Without loss of generality, we assume ao} = 0 for all j in GM

8/t)-8(t) and x2(t) = ed(t) - e(t) and thus (18) can be written as

(19)

controller, XI (t)

(20)

From equation (20), one sees that the GM controller is actually a nonlinear

controller with variable gain changing with state of the input variables (8d(t) - 8(t» and

(ed(t) - e(t». Thus, the output from GMN controller becomes a nonlinear variable gain

control signal written as
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The hybrid linear PD controller and GMN becomes a nonlinear adaptive PD
controller and can be written as

(22)

Feedback-Error Learning

Kawato and Mitsuo (1993) offer a complete solution to the inverse dynamics problems
that use connectionist networks. Their work is based on the study of physiological
information. They called this learning method feedback-error learning. In this paper, we
adopt this learning scheme using feedback-error learning for a dynamic structural
network applied to an adaptive nonlinear PD controller. In this learning scheme, the
conventional PD controller serves the two purposes as the linear controller and as a
stable trainer that provides error signal for the Growing Multi-Experts etwork. It is
shown in Fig. 9.

8~)

Robot

Fig. 9: Block diagram oj nonlinear adaptive PD controller

Simulation Studies - Variable Load Compensation

The simulations are based on a situation that is often encountered when a 2-link robotic
arm is used to transfer work pieces in a production line Song et al. (1994) as shown in
Fig. 10. Suppose that the end-effector starts moving from position Po at to = O. It then
picks up a container that contains np = 4 parts at time tp+ = 2.0s, moves to a workstation
PI where n

d
, = 2 parts are removed from the container at time t

d
7= 4.0s and finally moves

to work station P2 where the remaining parts nd, = 2 are removed from the container at
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y

o
Fig. 10: The two-link robotic arm

x

time l,,: = 6.0s . The load transitions can suddenly change in robot dynamics and are
unpredictable. So the control strategy developed in this paper is an attractive scheme in
this application because it does not require exact values for the mass of the parts in the
container, the pick-up time, or the drop-off times.

The payload variation model can be represented as

where m", me mare weight of the parts and container. They are assigned as 1.2 kg and
0.5 kg respectively. In the simulation, a two-link robot is used with the dynamics model
from equation (23). The two-link robot is illustrated in Fig. 10.

D ( ) = [(m1 + ~)l; + ~Z: + 2~l/-2 COS(q2) ~Z: +~~4 cos (q2)]
oq ~Z:+~l14cos(q2) ~Z:

C ( .)-[(~ +~)l14sin(q2)q2 -~lI4sin(q2)ql-~lI4sin(q2)q2]
o q,q - ~lI4sin(q2)ql 0

G ( ) = [(m1 + ~)llgcoS(ql) + ~l2gcOS(q, + q2)]
o q ~4gcOS(ql + q2)

(24)

(25)

(26)

where m, and li represent the mass and length of link i(i = 1,2), respectively; g = 9.8Im/
S2 is the gravitational constant; and q, and q2 are the angles for the joints. ote that in
deriving these equations, it is assumed that the mass of each link is a point mass,
concentrated at the distal end of the link. Let the parts and the container be treated
as a point-mass payload, which has the total mass m;.
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(27)

From equations (17) and (27), the loaded robot dynamic model can be expressed
as To + Tc In this simulation study, the robot parameters are set as ~ = 0.432 m; ~ =
0.432 m; m, = 15.91 kg; m

2
= 11.6 kg;. The main concern of the simulation is to test the

effectiveness of the proposed control strategy; it is assumed that the desired path for the
end-effector at each stage is given such that the corresponding paths for the joints are
determined to be the Hermite polynomial trajectory Ge et at. (1998) of the third degree
in t with continuous bounded position, velocity and acceleration. The general expression
for this kind of desired trajectory is given as:

(28)

where %and qf are the arm initial and final positions, respectively, and t
d

represents the
time at which the desired arm trajectory reaches the desired final position. In this
simulation example, the following values were chosen for the desired trajectories

The gains for the PD-eontroller were chosen

On-line GMN parameter settings are depicted in Table 1.

TABLE 1
Parameter setting of on-line GMN for nonliear PO controller

Certainty Factor, 00'
Pruning threshold, 0p....
Adaptation parameter, 11,
Adaptation parameter, 11

0

Adaptation parameter, 11p
Momentum term, 11M

Forgetting factor, A
umber of adaptation steps before pruning, °dLld<

Edge removal threshold, a~nux

I" Joint

0.6
0.01
0.01
0.01
0.98
0.1

0.998
100
500

2nd Joint

0.6
O.oI
O.oI
0.01
0.98
0.1

0.998
100
500
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Case 1: Non-adaptive Control

When the GMN controller is not activated, the resulting control action is effectively a
simple PD control. It is observed from these results that the non-adaptive PD control has
a significant joint angle and joint velocity tracking error due to the dynamic effects of
load transition. Figs. lla and llb show the desired trajectories and trajectories obtained
from non-adaptive PD controller. Joint angle 2 has substantial tracking error as shown
in Fig. 11b. Figs. 11c and 11d illustrate the joint velocity tracking profile for first joint
and second joint trajectory respectively.

Case 2: Adaptive Control

Figs. 12a and 12b, show that the tracking error is much smaller than the non-adaptive
case because of the "learning" mechanism. Joint velocity of first joint and second joint
link also exhibit significant improvement as shown in Figs. 12c and 12d. The position
tracking error of non-adaptive PD and adaptive PD controller is compared in Figs. 13a
and 13b. It is clear that addition of GMN control signal makes a significant improvement
in the tracking performance whereas Figs. 14a and 14b indicate substantial reduction in
velocity tracking error.
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Fig. 11: Fixed PD controller (a) first joint position tracking (b) second joint position tracking
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DISCUSSION

The proposed adaptive PD controller is compared with conventional PD controller. The
comparison of the two schemes is based on computer simulation. Comparison of the
position tracking performance for the two control schemes shows a substantial
improvement in steady state error. The augmented control signals from GMN networks
have successfully reduced the steady state error as shown in Figs. 13a and 13b. The
maximum tracking errors for joint one and two using GMN-based control scheme were
found to be 0.10 and 0.05. In the case of conventional PD control scheme, the maximum
tracking errors were 0.24 and 0.16 respectively. The reduction of tracking error is due
to the efficacy of adaptive PD controller in compensating for the unstructured uncertainty
caused by variable load in two-link robot.

CONCLUSION

We have presented a novel self-learning nonlinear PD controller using a class of dynamic
structure network known as Growing Multi-Experts Network. This method results in a
network that is "economic" in terms of network size and learns the required control
behavior on the fly during the robot operation. The effectiveness of the nonlinear
adaptive PD controller scheme was put to test with variable load and friction compensation
in robot manipulators. The performance results demonstrate the learning capabilities
and better tracking performance of nonlinear adaptive PD controller in comparison to
conventional linear PD controller.
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