Relation between sum of $\mathbf{2 m t h}$ powers and polynomials of triangular numbers

Abstract

Let $\wedge(\mathrm{m}, \mathrm{k})(\mathrm{n})$ denote the number of representations of an integer n as a sum of k 2 mth powers and $\mathrm{Q}(\mathrm{m}, \mathrm{k})(\mathrm{n})$ denote the number of representations of an integer n as a sum of k polynomial $\operatorname{Pm}(\supset)$, where \supset is a triangular number. We show that $\wedge(2, k)(8 n+k)=2 k \mathrm{Q}(2, \mathrm{k})$ (n) for 1 O k Ò 7. A general relation between the number of representations (formula presented) and the sum of its associated polynomial of triangular numbers for any degree mó 2 is given as $\Lambda(m, k)(8 n+k)=2 k Q(m, k)(n)$.

Keyword: Number of representations; Polynomial; Triangular numbers

