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ABSTRAK

Diperkenalkan dua kaedah terubahsuai untuk pengoptimuman tak. berkekangan.
Kaedah tersebut menggunakan strategi gabungan linear cembung dengan arah
gelintaran tercuram quasi-Newton BFGS dan penurunan tercuram sebagai arah
geIintaran. Suatu kriteria penukaran telah diterbitkan berdasarkan Syarat
Peringkat Pertama dan Kedua Kuhn-Tucker. Kriteria penukaran tersebut
boleh dilihat sebagai suatu cara pergerakan di antara langkah quasi- ewton
dan penurunan tercuram berpadanan dengan syarat Kuhn-Tucker. Ini adalah
untuk menjamin bahawa tiada gerakan tersaur berpotensi menjauhi langkah
penurunan semasa yang mengurangkan nilai fungsi matlamat dapat dibuat.
Keputusan berangkajuga dipersembahkan dan menunjukkan bahawa kemajuan
telah diperolehi berbanding dengan algoritma BFGS.

ABSTRACT

Two modified methods for unconstrained optimization are presented. The
methods employ a hybrid descent direction strategy which uses a linear convex
combination of quasi- ewton BFGS and steepest descent as search direction.
A switching criterion is derived based on the First and Second order Kuhn­
Tucker condition. The switching criterion can be viewed as a way to change
between quasi- ewton and steepest descent step by matching the Kuhn-Tucker
condition. This is to ensure that no potential feasible moves away from the
current descent step to the other one that reduced the value of the objective
function. Numerical results are also presented, which suggest that an
improvement has been achieved compared with the BFGS algorithm.

Keywords: Unconstrained optimization, quasi-Newton BFGS, steepest descent,
Switching criteria, First and Second order Kuhn-Tucker condition

INTRODUCTION

In this paper, we consider the following unconstrained minimization problem:

min fix), where xEEn, ff£2 and f is strictly convex . (1.1)

In particular, we focus on the class of algorithm known as quasi-Newton or
variable-metric methods. These algorithms, which assume the availability of the
gradient g(x) for any given x, are based on the recursion
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(1.2)

In this recursion, Ak is a posltlve stepsize parameter selected to satisfy the
inexact line search conditions

(1.3)

(1.4)

where crt and cr2 are two constants such that 0 < crt ~ cr
2

< 1 and cr
j

< 0.5 and
Pk a direction of ~farch, while Hk is an n3 n matrix approximating the inverse
Hessian [V 2f(x)r at the kth. iteration. The objective of these algorithms is to
obtain some of ;he advantages of Newton's method while using only first-order
information about the function. Thus, the approximations Hkare inferred from
the gradients at previous iterations and updated as new gradients become
available. The updating is done such that

(1.5)
where

This condition, which is often referred to as the quasi- ewton condition, is
motivated by the fact that, if the function is quadratic, then

(1.6)

The first algorithm of this type was invented by Davidon (1959). One of the
widely accepted formula for the approximation of inverse Hessian is the BFGS
formula, briefly discussed in Fletcher (1980).

and Ak is selected such as to minimize f(xk - AHkgk).

However, when one has a poor approximation to an unconstrained
minimizer, quick improvement is likely to result from taking a step along the
negative gradient (steepest descent). This approach bogs down as the minimum
is approached. However, when a good approximate minimizer is available, the
quasi- ewton methods often improve it quickly to acceptable accuracy.
Considering the above fact, we therefore attempt to improve the quasi-Newton
BFGS algorithm by introducing a switching criteria to choose between steepest
descent step and ewton step.
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PRELIMINARIES AND FORMUIATION OF PROBLEM

We first give the following definition:
Definition: A direction Pk is said to be a descent direction if there exists a Ak> 0
such that

(2.1)

A more useful form of the said definition can be written as Lemma.

Lemma: A direction Pk is said to be a descent direction if there exists a \ > 0 such
that

(2.2)

Proof We can characterize Pk algebraically by considering the Taylor series
expansion of j(xk+ AkPJ in terms of j(xk) and gk as Ak~O :

To satisfy (2.1) with A
k

> 0 it follows immediately that (2.2) be satisfied.
We can now define a new direction of search dk, where d k is the linear

combination of the gradient and quasi-Newton directions in the form of

(2.3)

The direction d
k

equals to the quasi-Newton direction if 8
k

= 0 and the
steepest descent if 8k=1. Furthermore, it is also easy to prove that dk is a descent
direction when Hk is positive-definite. However, when positive-definite BFGS
update (1.7) is used, both quasi-Newton and steepest descent directions are
descent directions, and one may wonder which direction will yield a better
result. We can view the idea of choosing between these two steps as the
subproblem of obtaining the optimal 8k such that

(2.4)
subject to 0 ~ 8k ~ 1

where A
k

is the stepsize selected to satisfy certain inexact line search condition.
The following assumption is necessary:

Assumption 1. i. 8 is independent from A in every iteration.
ii. We assume that there are no other good approximate minimizers

except the Newton and Cauchy point along the line segment
from the Newton step to the steepest descent step.

In the following section, we will analyze the necessary and sufficient conditions
for constrained minimization subproblem (2.4).
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KUHN-TUCKER NECESSARY AND SUFFICIENT CONDITIONS
FOR CONSTRAINED MINIMIZATION

Necessary and Sufficient Conditions for a General Constrained Minimization

Consider the general constrained minimization problem :

mm fix)

subject to e
i

(x) = 0, i e Ie (3.1)

hi (X) ~ 0, i e Ih

where each e
i

and hi is also a real function of x and the set Ie and I
h

are
composed of the indices of the constraint functions.

A local solution to a constrained optimization problem is found if and only
if the variables satisfy the constraints, and no small change to the variables
improves the objective function and keeps the constraints satisfied. It follows
from this elementary statement that, at the solution to a nonlinear programming
problem some fundamental conditions are obtained by the gradient vectors of
the objective and constraint functions, including the well-known Kuhn-Tucker
conditions. These conditions are stated as theorems below:

Theorem 1: (Kuhn-Tucker Conditions-First-order necessary condition)

If x* is a local solution of the constrained minimization problem, and if the
constraint qualification condition is satisfied at x*, then there exist multipliers
lu; ia } and Iw ; ia

h
}, where each w. is nonnegative and where w is zero if

hi' (x*)e is positi~e, such that the gradie'nt of the objective function at 'x* has the
form

Vf(x*) = I,u i Vei(x*) + I,wi Vhi(x*)
iele ieIh

(3.2)

Theorem 2: (Second-order Necessary Condition)

Let x* be a Kuhn-Tucker point (x* satisfied First-order condition) of the
constrained minimization problem, and let the vectors {Vei(x*); iEI e} and
{Vhi(x*); iEI h } be linearly independent. A necessary condition for x* to be a
local solution is that, if s is any vector that satisfied the conditions

then the inequality

sTVei(x*) = 0, iEI e

sTVhi(x*) = 0, iEI h

(3.3)
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holds, where

(3.5)

is the Lagrangian function with u and w satisfy equation (3.2).

Theorem 3: (Second-order sufficiency Condition)

Let x* be a Kuhn-Tucker point of the constrained minimization problem, and
let L(x) be the Lagrangian function (3.5), where u and ware parameters that
satisfy expression (3.2). A sufficient condition for x* to be a local solution is
that, for every nonzero vector s that satisfies the conditions

sTVf(x*) $: 0

sTVe;(x*) = 0, iEI e

sTVh;(x*) ~ 0, iEI h

the inequality

sTV 2L(x*) s> 0

holds.

The proofs of all three theorems can be found in Powell (1980).

(3.6)

(3.7)

Conditions for Solutions of Subproblem

We can now deviate the conditions for solutions of subproblem (2.4). Let us
define a function,

then, the subproblem (2.4) is equivalent to

8 k = arg min <1>(8)

subject to 0$:8$:1
(3.9)

The linear inequality constraints in subproblem (3.9) are:

and
h

2
= 1 - 8 ~ O.

The Lagangian function of (3.9):
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Definition: An inequality constraint is said to be active at a point if it is satisfied
as an equality there or, in other words, if the point lies on the constraint
hypersurface, otherwise the constraint is said to be inactive or passive.

Inequality constraints (3.10) and (3.11) cannot be active simultaneously.
Suppose, at a point 8* we assume that only inequality constraint hI is active. The
First-order necessary condition requires that if 8* is a local solution for (3.9),
WI ~ 0 and w

2
= 0 since the inequality constraints h

2
is inactive. Or

:8 (<1>(8*)) = WI ~ 0 (3.13)

Conversely, if we assume inequality constraint (3.11) is active at 8* , the First­
order necessary conditions give

(3.14)

The Second-order conditions state that 8* is a local solution if V2L(8*) is

positive definite. However the question remains open if V2L(8*) is positive

semidefinite. We will give brief discussion why it is sufficient to ignore the

positive semidefinite of V2L(8*) in the end of this section.

We then only require that

If we denote
x(8) = x+ + A «1- 8)(-Hg) + 8(-g)),

in which x+ is a fixed point along the line on the set of points, x(8).
By the Chain rule, we have

so the gradient of <1>(8) (= f(x(8)) along the line at any point x(8) is

Likewise the curvature along the line is

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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Then, the Second-order necessary and sufficient conditions require that

V2f(x(8*)) positive semidefinite and positive definite respectively.

Some Argument on Second-order Neccessary Condition

If theorem 2 is applied to test whether a Kuhn-Tucker point is a local solution
of a constrained optimization problem, then we find sometimes that the
question is unanswered. We consider this possibility in an important special

case, namely when the constraints gradients {Ve j (x*); iEI e } and {Vh j (x*); iEI h }

are linearly independent, and the "strict complementarity" condition is satisfied,
which means that, the Lagrangian function (3.5), the multiplier Wi is positive
for all i in I

h
• The strict complementarity and equation (3.2) imply that a

direction s satisfied the conditions (3.3) if and only if it satisfies the conditions
(3.6). Therefore, in the special case particularly to our one-dimension problem,
the theorem fails to indicate whether a Kuhn-Tucker point is a local solution
only if

(3.20)

holds. At least one of the terms (Hg-gfV2f(x(8*)) (Hg-g)is zero. This result,
is an extension of a well-known property of unconstrained minimization
calculation; namely that second order conditions for local solutions are
inadequate if and only if the second derivative matrix of the objective function
is positive semidefinite. A good review for the treatment of this situation is given
in Mangasarin (1969).

It is now sufficient to state that any Kuhn-Tucker point 8* is a local solution
if condition (3.15) is satisfied or V2f(x(8*)) is positive definite, and the positive
definiteness of V2f(x(8*)) is trivial for strictly convex objective function f(x).

We can now summarize our work with Assumption 1 as follows:

Criteria A. We first consider the Newton point (8k = 0),

(3.21)

If VfT(n k+1) (Hkgk-gk) < 0, the First-order condition is violated. Therefore,

with Assumption 1(ii) , we reject nk+l and take

(3.22)

Criteria B. We now consider the Cauchy point (8k = 1) first,
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If VfT(C k +l ) (Hkgk-gk» 0, the First-order condition is violated. Therefore,

with Assumption 1(ii), we reject Ck+1
and take

ALGORITHMS

Algorithm Hl :

Step 1. Input HI = I and XI' k : = 1.
If IIg(x l ) II ~ £\' stop; else,

Step2. Compute quasi- ewton direction of search, Pk = - Hkgk.

Step 3. Calculate Ak using inexact line search condition
and set Newton point nk+1 = xk - AkHkgk .

Step 4. If (Hkgk - gk)Tg(~+I) ;;::: 0 , set X k+1 = nk+l ,

update H k+1
by (1.6), and go to Step 6,

else, compute steepest descent search direction, wk= - gk.

Step 5. Calculate Ak
new using inexact line search condition

and set Cauchy point, Ck+1 = xk - Ak
new gk ' set Xk+1 = Ck+I '

and go to Step 6.

Step 6. If II g(xk+) II ~ £1 or II Ok II ~ £2' E D,
else, set k : = k+l, and go to Step 2.

Algorithm H2 :

Step 1. Input HI = I and XI' k : = 1.
If Ilg(xl)11 ~ £1' stop; else,

Step2. Compute wk = -gk .

Step 4. If (Hkgk - gk)Tg(Ck+l ) < 0, set X k+1 = Ck+I'

update H k+1
by (1.6), and go to Step 6,

else, compute Pk = - Hkgk·

Step 5. Calculate Ak
new and set nk+1 = xk - Ak

new Hkgk ' set X k+1 = n k+l ,

and go to Step 6.
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Step 6. If II g(xk+,) II $; £, or II Ok II $; £2' END,
else, set k : = k+1 , and go to Step 2.

RATE OF CONVERGENCE

Under Preliminaries and formulation of Problem, we define the descent property

gkTpk < 0, where Pk is any descent direction for \fk. (5.1)

If the search direction Pk is nearly orthogonal to the steepest descent direction
-gk' the descent property (5.1) is nearly violated. To exclude this possibility, we
assumed that the angle between Pk and -gk is uniformly bounded away from 90°,
that is if

4>k $; 7t 12 - Jl \fk. (5.2)

for some Jl > 0, where 4>k E [0, 7t 12] is defined by

We now state a simple global convergence theorem .

(5.3)

Theorem G
j

: For a descent method with inexact line search, in which (1.3), (1.4)
and (5.2) hold, and if Vf exists and is uniformly continuous on the level set

Ix: f(x) < f(x l )}, then either gk = 0 for some k, or fk(=f(Xk))~-ocorgk~o.

Proof Assume that gk i= 0 for all k (whence Ok i= 0) , and that f... is bounded

below; it follows thatf... - 1...1~ 0, and hence from (1.2) that -gkDk~ O. Assume

gk~ 0 does not hold. Then :3 an £ > 0 and a subsequence such that IIgkll
2
~ £

and 1I0kl1
2
~ O. Now (5.2) and (5.3) give

(5.4)

But a Taylor series gives f...+, = f... + g(~k)TOk' where ~k is on the line segment
(xk, xk+')· By uniform continuity, g(~k) ~ gk as Ok ~ 0, so gk+lTOk = gkOk +
o(IIOkll) and gk+,TOkIgA~ 1, which contradicts (1.4). The possibility f...~ -occan
usually be eliminated by the nature of fix).

Assume the sequence xk (k = 1, 2 ,... ) generated by the BFGS algorithm

converges to a solution x* where V 2f(x*) is positive definite. If the stepsize

A. = 1 is chosen whenever it satisfies the line search condition (1.3) and (1.4),
k

it can be shown that xk converges to x* superlinearly, that is

IIx
k
+

1
- x*1I 1 II xk - x*1I ~ O.
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More details can be found in Dennis & More (1977).
Now, we can state the convergence theorem for Hi and H2 Algorithms.

Theorem G2: LetJsatisfies (1.1) on the level set {x :j{x) < (Xl)} and let x* be

a locally unique solution to the equation g(x*) = O. Also assume that V2J
satisfies a Lipschitz condition at x*, i.e. :3 a constant K such that

(5.6)

Then, Hi, H2 Algorithms preserve the local superlinear convergence of the
BFGS algorithm and globally convergent when the objective function j{x) is
convex, if the inexact line search conditions (1.3) and (1.4) are satisfied.

Proof Since the direction of search dk as (2.3) is a descent direction, theorem Gi
guarantees that any descent method (particularly for Hi and H2 Algorithms
where e = 0 or 1) converges globally when Jis strictly convex. Also when (1.3)

and (1.4) are satisfied, for a sequence of k ~ 00, g k~ 0, or

(5.7)
or

(5.8)

which preserve the local superlinear convergence of the BFGS algorithm.

NUMERICAL RESULTS

A FORTRAN subroutine was programmed to test the Hi and H2 Algorithms
presented in the previous section. The following test problems are used.

Problem 1. Rosenbrook 's function

J (Xl' x2) = 100 (x2 - X/)2 + (1- X
I
)2

Starting point: i. (-1.2, 1.0)T
ii. (-12, 10)T
iii. (-120, 100)T

Solution (1, I)T

Problem 2. Powell's function of four variables

j{xl, x2' x3' x4) = (Xl + 10X2 )2 + 5 (x3 - X4)2 + (x2 - 2X
3
)4

+ 10 (Xl - X4)4

Starting point: i. (3, -1, 0, I)T
ii. (30, -10, 0, 10)T
iii. (300, -100, 0, 100)T

Solution (0, 0, O,O)T
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Problem 3. Wood's function
fiXl' x2' x3' x4) 100 (x2 - X1

2)2 + (1- XI)2 + 90 (x4 - X3
2)2

+ (1 - X
3
)2 + 10.1 [(x

2
- 1)2 + (x

4
- 1)2]

- 19.8 (x
2

- 1) (x
4

- 1)

Starting point

Solution

i. (-3, -1, -3, _l)T
ii. (-30, -10, -30, -10)T
iii. (-150, -50, -150, -50)T
(1, 1, 1, l)T

Problem 4. Beale's function of four variables

f (Xl' X2' X3' X4) = {1.5 - [XI (1 - x\)]J2
+ {2.25 - [Xl (1 - X2)2]j2 + {2.65 - [Xl (1- X2)3]}2
+ {1.5 - [x3 (1 - X4)]}2 + {2.25 - [x3 (1 - X4)2]J2
+ {2.65 - [x3 (1- X4)3]j2

Starting point i. (1, 1, 1, l)T
ll. (5, 5, 5, 5)T
lll. (10, 10, 10, 10)T

Solution (3, 0.5, 3, O.5)T

The calculation was carried out on an HEWLETT PACKARD Vectra 486
machine. The convergence criterion is

or (5.9)

For each problem we run for £1 = 0.0001 and £2= 0.00005 and the initial matrix
HI is chosen to be unit matrix I The stepsize A

k
> 0 satisfying conditions (1.3)

and (1.4), with crl~O and cr2~ 1, or

(5.10)

(5.11)

and, is calculated by cubic approximation with bracketing techniques. More
details can be found in Fletcher [3] (1980). All problems are solved, and the
numbers of iterations are given in Table 1. Symbol "F" indicates particular
algorithm fails. We also solved these problems by the BFGS algorithm, and the
numerical results of the BFGS algorithm are also given in Table 1. Table 2
summarizes the results in Table 1.

The numerical results show that the Algorithm Hi is superior than the
original BFGS algorithm on this collection of test problems.
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TABLE 1
Comparison of Algorithms HI and H2 with BFGS

Test Problem Starting Point BFGS HI H2

I i. 20 20 F
1 II. 31 31 28
1 Ill. 55 55 56
2 I. 23 21 21
2 II. 27 25 21
2 Ill. 20 20 24
3 I. 32 23 26
3 ii. 34 18 30
3 iii. 39 39 51
4 I. 10 7 10
4 II. 11 8 10
4 Ill. F 18 20

TABLE 2
Summary of Table 1 - Comparison of HI and H2 with BFGS

HI H2

Superior 7 7
Inferior 0 4
Draw 5 1
Total 12 12

CONCLUSION

In this paper, we have formulated and solved a subproblem to obtain
our switching criteria. Incorporating this switching strategy into a quasi-

ewton BFGS algorithm, we demonstrated by numerical tests that we can
obtain results comparable to the normal quasi-Newton BFGS algorithm. We
had chosen the BFGS update which uses formula (1.7) because it is easy to
see that the updating Hi and H2 algorithms possess the local superlinear
and global convergence property of the BFGS algorithm. The numerical
results clearly demonstrate that our algorithm is superior than the BFGS
algorithm.
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