EFFECTS OF EXTRACTION, PURIFICATION AND FREEZE DRYING CONDITIONS ON ENZYMATIC PROPERTIES OF SERINE PROTEASE FROM MANGO (*Mangifera indica* L. cv. *Chokanan*) PEEL

MEHRNOUSH AMID

FK 2011 30
EFFECTS OF EXTRACTION, PURIFICATION AND FREEZE DRYING CONDITIONS ON ENZYMATIC PROPERTIES OF SERINE PROTEASE FROM MANGO (*MANGIFERA INDICA* L. CV. *CHOKANAN*) PEEL

By

MEHRNOUSH AMID

Thesis submitted to the school of graduate studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2011
DEDICATION

This thesis is dedicated to my loving family: To my dear father, Amir Amid, who has been my inspiration and my strength through all these years, always there for me, never out of reach whenever I needed him, to whom I owe more than I can ever repay. Thank you for your love. To my dear brother, I am grateful for what you are and have always been to me; and to my dear late mother, I have but one wish — which you could be here.
Abstract of thesis presented to the of the Universiti Putra Malaysia fulfilment of the requirement for the degree of Doctor of Philosophy

EFFECTS OF EXTRACTION, PURIFICATION AND FREEZE DRYING CONDITIONS ON ENZYMATIC PROPERTIES OF SERINE PROTEASE FROM MANGO (MANGIFERA INDICA L. CV. CHOKANAN) PEEL

By

MEHRNOUSH AMID

April 2011

Chairman: Associate Professor Ling Tau Chaun, PhD

Faculty: Engineering

This research studies the extraction, purification, characterization and preservation by freeze drying of serine protease from mango (Mangifera Indica CV. Chokanan) peel. Serine protease is one of the most important enzymes widely used in biotechnological and industrial applications. The purification was carried out using expanded bed adsorption (EBA) and aqueous two-phase system (ATPS). In addition, the main factors affecting enzymatic properties of serine protease were optimized using response surface methodology (RSM). It was found that the optimum condition for serine protease extraction was an amount of 50 ml of sodium phosphate buffer at 2.5 °C for 2min. Also, the specific activity of enzyme after extraction was 17.2 U/mg. In continuing experiments the optimal conditions of purification using EBA were proved to be sample load, washing
and elution at flow rate of 100 cm/h and pH 7.5. In addition, heat treatment of unclarified feedstock was found to be an important parameter in decreasing the level of the adsorbed contaminated protein. It was demonstrated that serine protease could be recovered with a purification factor of 11.39 and a yield of 82%, using EBA. Results indicated that EBA is a suitable method that allows recovery of serine protease to be achieved without product loss. Mango peel contains a lot of fiber that needs filtration for recovery with EBA, which is time consuming and costly, so the purification of serine protease was also studied with ATPS polyethylene glycol/potassium phosphate. The optimum purification factor and yield were obtained when 6000 g/mol of polyethylene glycol, 28.5% (w/w) of tie light length and 5% of NaCl were used. Serine protease purification factor and yield using ATPS were 12.51 and 89%, respectively. Purification with ATPS does not need filtration and thus, this method is more economical, faster and with easy scale up compared to EBA. Yield of serine protease after using freeze drying in the presence of coating agents and activator was increased to 92.2%. The optimum temperature and pH for activity of serine protease were 70°C and 8, respectively. This enzyme was also stable in the presence of inhibitors, surfactants and oxidizing agents. It was additionally found that activity of serine protease was increased in the presence of calcium ions.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN MENGEKSTRAK, PENULENAN SERTA KAEDAH PENGERINGANDAN PEMBEKUAN TERHADAP JUMLAH ENZIM DALAM SERINE PROTEASE DARI KULIT MANGGA (MANGIFERA INDICA L. CV. CHOKANAN)

Oleh

MEHRNOUSH AMID

April 2011

Pengerusi: Profesar Madya Ling Tau Chaun, PhD

Fakulti: Kejuruteraan

Penyelidikan ini mengkaji ekstraksi, penulenan, kecirian dan pengeriningan beku protease serin daripada kulit mangga. Protease serin merupakan salah satu enzim yang paling penting digunakan secara meluas dalam aplikasi bioteknologi dan industri. Penulenan dilakukan dengan menggunakan kawasan penyerapan yang luas (EBA) dan sistem air dua fasa (ATPS). Selain itu, faktor utama yang mempengaruhi sifat enzimatik protease serin telah dioptimumkan dengan menggunakan metodologi respon permukaan (RSM).

Menurut dapatan kajian, keadaan optimum untuk ekstraksi protease serin adalah sebanyak 50 ml buffer sodium fosfat di paras 2.5°C selama 2 minit. Juga didapati,
aktiviti khusus enzim setelah ekstraksi adalah 17.2 U/mg. Dalam percubaan seterusnya keadaan yang optimum daripada penulenan menggunakan EBA telah terbukti mengandungi timbangan sampel, cucian dan elusi yang mengalir dengan kelajuan 100 cm/h dan pH 7.5. Selain itu, bahan makanan ternakan tanpa klasifikasi yang dipanaskan merupakan parameter penting dalam mengurangi kadar protein tercemar yang terserap. Hal ini menunjukkan bahawa protease serin boleh dipulihkan dengan faktor penulenan 11.39 dan menghasilkan 82%, dengan menggunakan EBA. Keputusan kajian menunjukkan bahawa EBA adalah kaedah yang sesuai bagi membolehkan pemulihan protease serin tercapai tanpa kehilangan produk. Kulit Mangga mengandungi banyak serat yang perlu filtrasi untuk pemulihan dengan EBA, yang memakan masa dan mahal, dan oleh itu penulenan protease serin juga di kaji bersama dengan polietilena glikol ATP / fosfat potasium. Faktor penulenan dan hasil optimum diperolehi ketika 6000 g / mol glikol polietilena, 28.5% (W/W) bercahaya rendah dan 5% NaCl digunakan. Faktor penulenan protease serin dan penghasilan menggunakan ATPS adalah 12.51 dan 89% untuk pertama dan kedua berikutnya. Penulenan dengan ATP tidak memerlukan penapisan dan oleh yang demikian, kaedah ini lebih ekonomik, lebih cepat dan dengan kesampaian skala mudah berbanding dengan EBA. Penghasilan protease serin setelah menggunakan pengeringan beku bersama dengan agen pelapisan dan penggerak akan meningkat menjadi 92.2%. Suhu optimum dan pH untuk aktiviti protease serin adalah 70 °C dan 8 untuk pertama dan kedua beikutnya. Enzim ini juga stabil jika ada agen inhibitor, surfaktan dan pengoksidaan. Seterusnya didapati aktiviti protease serin meningkat dengan adanya ion kalsium.
ACKNOWLEDGEMENTS

To the Almighty, from whom all mercies flow, I thank Him for the strength and wisdom He has bestowed upon me in the course of my studies and through all the days of my life.

I would like to express my deepest appreciation to Assoc. Prof. Dr. Ling Tau Chaun, the chairman of my supervisory committee, for taking me under his wings and giving me the benefit of his knowledge, wisdom and expertise over the years, and enabling me to successfully complete my thesis. He has been a pillar of strength throughout the entire period of my study here at UPM and I will always be grateful for his patience and for the many times he has walked that extra mile for me.

My sincere appreciation also goes to Associate Professor Dr. Tan Chin Ping, Dr. Seyed Hamed Mirhosseini, and Dr. Norashikin binti Ab Aziz, members of my supervisory committee, who have been extremely helpful and supportive, providing me guidance, answering my many questions and showing me the way. Understandably, there were times when I needed help, in ways big and small and it was always comforting to know that they would always be there for me. To them I owe a debt of gratitude.

To the many others who have come into my life in my years at UPM, some of whom have grown to be more than course-mates and acquaintances, I thank you for your friendship.
I certify that Thesis Examination Committee has met on the 8 April 2011 to conduct the final examination of Merhnoush Amid on her Doctor of Philosophy thesis entitled “Effect of extraction, purification and freeze drying conditions on the enzymatic properties of serine protease from mango (Mangifera Indicav Cv. Chokanan) peel” in accordance with Universiti Putra Malaysia (Higher Degree) Act 1980 and University Putra Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree.

Members of the Examination Committee were as follows:

Associate Professor Ir. Johari Endan, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Professor Arbakariya Ariff, PhD
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Associate Professor Ir. Chin Nyuk Ling, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Professor Conan J. Fee, PhD
Faculty of Chemical and Process Engineering
University of Canterbury
New Zealand
(External Examiner)

NORITAH OMAR
Associate Professor and Deputy Dean
School of Graduate Studies
University Putra Malaysia

Date:
The thesis was submitted to the Senate of University Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Ling Tau Chaun, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Tan Chin Ping, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Seyed Hamed Mirhosseini, PhD
Senior Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Norashikin binti Ab Azizi, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MEHRNOUSH AMID
Date: 8 April 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**
 - 2.1. Mango
 - 2.2. Composition of Mango
 - 2.3. Mango Peel
 - 2.3.1. Proximate Composition
 - 2.3.2. Total Phenolics, Carotenoids, Vitamin C, E and Dietary Fiber
 - 2.3.3. Enzyme of Mango Peel
 - 2.4. Proteases
 - 2.4.1. Serine Protease
 - 2.4.2. Cystein Protease
 - 2.4.3. Aspartic Protease
 - 2.4.4. Metalloprotease
 - 2.5. Source of Protease
 - 2.6. Application of Protease
 - 2.6.1. Use of Protease in Food Industry
 - 2.6.2. Use of Protease in Detergent Industry
 - 2.6.3. Use of Protease in Leather Industry
 - 2.6.4. Use of Protease in Pharmaceutical Industry
 - 2.6.5. Use of Protease in Waste Treatment
 - 2.7. Enzyme Extraction
 - 2.7.1. Extraction of Enzyme from Plant
 - 2.7.2. Downstream Processing in Biotechnology
 - 2.8. Problem Associated with Conventional Processing Approaches
 - 2.9. Expanded Bed Adsorption
2.10. Aqueous Two Phase System
2.11. Freeze Drying
2.12. Artificial Neural Network
2.13. Response Surface Methodology
2.14. Characterization of Serine Protease
 2.14.1. Molecular Weight of Serine Protease
 2.14.2. Optimum Temperature and pH
 2.14.3. Effect of Metal Ions, Inhibitors and Surfactants on Serine Protease
2.15. Concluding Remarks

3

GENERAL METHODOLOGY

3.1. Introduction
3.2. Chemicals
3.3. Apparatus
3.4. Extraction of Procedure
3.5. Preparation of Feedstock
3.6. Purification Procedure with Expanded Bed Adsorption
3.7. Purification Procedure with Aqueous Two Phase System
3.8. Freeze Drying of Serine Protease
3.9. Analytical Methods of Enzymatic Properties
 3.9.1. Proteolytic Assay
 3.9.2. Protein Concentration Determination
 3.9.3. Specific Activity of Serine Protease
 3.9.4. Purification Factor and Yield after Purification with EBA
 3.9.5. Storage Stability of Serine Protease
 3.9.6. Determination of Partition Coefficient and Selectivity after Purification with ATPS
 3.9.7. Determination of Purification Factor and Yield after Purification with ATPS
 3.9.8. Yield of Serine Protease Encapsulated
 3.9.9. SDS-PAGE
 3.9.10. Scanning Electron Microscope (SEM)
3.11. Characterization of Serine Protease
 3.11.1. Optimum Temperature of Serine Protease
 3.11.2. Thermal Stability of Serine Protease
 3.11.3. Optimum pH of Serine Protease
 3.11.4. pH stability of Serine Protease
 3.11.5. Effect of Metal Ions on Protease Activity
 3.11.6. Effect of Inhibitors on Protease Activity
 3.11.7. Effect of Surfactants and Oxidizing Agent on serine Protease Activity
3.11. Experimental Design
 3.11.1. Statistical Analysis
 3.11.2. Optimization and Validation Procedure
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>OPTIMIZATION OF SERINE PROTEASE EXTRACTIO FROM MANGO PEEL</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>4.1. Introduction</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>4.2. Materials and Methods</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>4.2.1. Extraction Procedure</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>4.3. Experimental Design</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>4.4. Results and Discussion</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>4.4.1. Fitting Response Surface Methodology</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>4.4.2. Total Protein</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>4.4.3. Total Activity</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>4.4.4. Specific Activity</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>4.4.5. Storage Stability</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>4.4.6. Temperature Stability</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>4.4.7. pH Stability</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>4.5. Optimization Procedure for the Enzymatic Properties</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>4.6. Validation of the Final Reduce Model for the Enzymatic Properties</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>4.7. Conclusion</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>PURIFICATION OF SERINE PROTEASE FROM MANGO PEEL USING EXPANDED BED ADSORPTION</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>5.1. Introduction</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>5.2. Materials and Methods</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>5.2.1. Purification Procedure with Expanded Bed Adsorption</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>5.3. Experimental Design</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>5.4. Results and Discussion</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>5.4.1. Fitting the Response Surface Models</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>5.4.2. Total Protein</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>5.4.3. Total Activity</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>5.4.4. Specific Activity</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>5.4.5. Purification Factor</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>5.4.6. Yield</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5.4.7. Storage Stability</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>5.4.8. Thermal Stability</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>5.4.9. pH Stability</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>5.5. Optimization Procedure</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>5.6. Validation of the Final Reduced Models</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>5.7. Conclusion</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>PURIFICATION OF SERINE PROTEASE FROM MANGO PEEL USING AQUEOSE TWO PHASE SYSTEM</td>
<td>103</td>
</tr>
</tbody>
</table>
6.1. Introduction 103
6.2. Material and Methods 104
 6.2.1. Purification Procedure with ATPS Method 104
6.3. Experimental Design 104
6.4. Results and Discussion 107
 6.4.1. Fitting the Response Surface Models 107
 6.4.2. Partition Coefficient 110
 6.4.3. Selectivity 111
 6.4.4. Purification Factor 113
 6.4.5. Yield 114
 6.4.6. SDS-PAGE analysis of purified serine protease from ATPS 117
6.5. Optimization Procedure for the Enzymatic Properties 118
6.6. Validation of the Final Reduced Model 119
6.7. Conclusion 120
6.8. Characterization of Serine Protease from Mango Peel 122
 6.8.1. Molecular Weight of Serine Protease 122
 6.8.2. Effect of Temperature on Protease Activity 123
 6.8.3. Effect of pH on Protease Activity and Stability 124
 6.8.4. Effect of Metal Ions on the Protease Activity 126
 6.8.5. Effect of Inhibitors on the Activity of Serine Protease 127
 6.8.6. Effect of Surfactants and Oxidizing Agent on Protease Activity 129
6.9. Conclusion 130

7 FREEZE DRYING OF PURIFIED SERINE PROTEASE FROM MANGO PEEL 132
7.1. Introduction 132
7.2. Materials and Methods 133
 7.2.1. Freeze Drying of Purified Serine Protease 133
7.3. Experimental Design 134
7.4. Results and Discussion 137
 7.4.1. Fitting the Response Surface Models 137
 7.4.2. Serine Protease Activity 140
 7.4.3. Yield 141
 7.4.4. Storage Stability 143
 7.4.5. pH Stability 144
 7.4.6. SEM of Encapsulated Serine Protease 149
7.5. Optimization Procedure 150
7.6. Validation of the Final Reduced Models 151
7.7. Conclusion 152
8 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
8.1. Conclusion 154
8.2. Recommendation for Future Study 157

REFERENCES 159
APPENDIXS 180
BIODATA OF STUDENT 184
LIST OF PUBLICATIONS 185