The Effect of Shade on Leaf Characteristics of Mikania micrantha (Compositae) and Their Influence on Retention of Imazapyr

I.B. IPOR and C.S. TAWAN
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
94300 Kota Samarahan, Sarawak, Malaysia

Keywords: Mikania micrantha, shade, imazapyr, leaf surface

ABSTRACT

Shading led to changes in the leaf histological characteristics of Mikania micrantha H.B.K., leaves at higher light intensity being thicker than those at lower light intensity. There was a significant increase in the area of spread of imazapyr droplets and retention on the upper leaf surface at lower light intensity, suggesting that shading had changed the upper surface topography and the amount of epicuticular wax of the leaves.

INTRODUCTION

Mikania micrantha H.B.K. is a pernicious weed in crops such as rubber, cacao, oil palm, coconut, banana, pepper and tea. It usually grows profusely in places receiving high rainfall or in humid habitats (Holm et al. 1977). The obnoxious character of this weed is mainly due to its rapid growth and spread, which smothers neighbouring plants, as well as its ability to root at the nodes when the stem comes in contact with soil (Macalpine 1959). Ipor (1991) reported that M. micrantha is a shade-tolerant species and persists in sites receiving 25% of full sunlight.

Imazapyr (isopropylamine salt of 2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl) nicotinic acid) is a broad spectrum herbicide commonly used for controlling both annual and perennial weeds (Fine et al. 1983). It is a systemic herbicide and is readily absorbed and translocated in plant tissues (Mallipudi et al. 1986). The uptake, translocation and activity of imazapyr increases significantly as light intensity decreases (Ipor and Price 1990).

It is well known that level of light intensities during growth can markedly alter the morphological, anatomical, physiological and biochemical properties of leaves. Ipor (1989) found that growth pattern, rate of expansion, final leaf area and specific area of individual leaves of M. micrantha were greatly influenced by shade or light intensities.

Daubenmire (1970) reported that epicuticular wax and distribution of crystalline wax had a significant effect on herbicide penetration. Hence, the objective of this study was to determine the role of light intensity in altering the topographical characteristics of wax, epidermal cell size and morphological structure of M. micrantha, which are likely to influence the retention of imazapyr.

MATERIALS AND METHODS

Midrib Sectioning for Light Microscopy

Plants were grown by using the procedures described by Price and Ipor (1990). The middle part of the second youngest lamina of...
M. micrantha of plants grown under three levels of shade (0, 50 and 75%) was cut into a piece of 7 x 7 mm and fixed in formalin-acetic acid (FAA) under reduced pressure for a week. The samples were dehydrated in a graded ethyl alcohol series. After dehydration, the tissue was infiltrated and embedded in paraffin, which allowed to solidify. Sections 10 µm thick were stained with alcian blue and safranin (50% alcohol) (Sass 1958).

For stomata counting, the middle portion of the preserved leaves was cut into pieces 10 x 10 mm. The tissues were thoroughly washed with distilled water then gently boiled in 45 ml of 15% nitric acid until the adaxial and abaxial surfaces separated. The tissues were gently transferred into a petri dish and washed with two changes of distilled water. The remaining mesophyll was brushed away with a fine brush. The cuticles were then treated with 5% acetic acid for 30 sec and immediately transferred into sodium hypochlorite (NaOCl) for 30 min until the tissues became clear. They were then washed twice with distilled water before being transferred into 50% ethanol for 2 min followed by staining with 50% safranin for 10 min. After dehydration, the cuticles were mounted in Canada balsam or euparal and the slides dried on a hot plate for two weeks. The stomata were counted under a light microscope.

Scanning Electron Microscopy of Upper Leaf Surface
Leaf pieces 0.75 x 0.75 cm were taken from the middle portion (avoiding the midrib) of the second youngest leaf of plants grown at the three levels of shade mentioned above as well as from plants growing naturally in an open habitat in an oil palm plantation in Malaysia. The leaf pieces were affixed to aluminum stubs with colloidal silver adhesive and immediately cooled in liquid nitrogen. Specimens were then freeze dried between at -40 to -60°C for 48 h.

Specimens were coated with gold and examined and photographed using a Jeol T20 scanning electron microscope (SEM) at 3200x magnification.

Wax Deposits on the Leaf Surface
The amount of epicuticular wax was estimated gravimetrically in a chloroform extract, using a method similar to that of Souza and Williams (1986). Fully expanded leaves from the three shade regimes were excised and their surface areas determined using a photomax tracer. The leaves were then dipped in chloroform twice for 10 sec, which was then filtered through Whatman No. 1 paper into a pre-weighed test tube. Test tubes with extracts were placed in a fume hood to evaporate the chloroform and then in a forced air oven at 45°C before being transferred into a vacuum desiccator and dried to constant weight.

Droplet Spread on Leaf Surface
A Buckard microapplicator was used to apply 0.2 µl droplets of lisamine red formulations on the upper leaf surfaces (Mabb and Price 1986). The eighth and second youngest leaves of plants at the ten-leaf growth stage were used. The diameter of the droplet deposit was measured after 24 hours with a calibrated graticule eyepiece and the area calculated. The experiment was carried out with thirty replicates and repeated twice.

Spray Retention of Imazapyr
Fifty-leaf stage plants were used. The plants were sprayed with solutions containing the soluble dye lisamine (1% w/v) with imazapyr (0.3 kg a.i/ha) and distilled water. A maldrive spraying system was used to deliver 211 l/ha.

After the sprayed deposits had dried, the leaves were detached from each plant and the sprayed deposits were washed off with 25 ml of distilled water. The lisamine concentration was measured in a spectrophotometer at wavelength 460 µm. The value of the peak point was compared with a standard concentration curve for the calculation of the equivalent amount of herbicide in the sprayed deposit. Data were expressed in µg herbicide per cm² of leaf. The experiment was repeated twice with thirty replicates.

RESULTS

Histology of M. micrantha
The effect of shading on the leaf characteristics and anatomy are presented in Plate 1 and Table 1. Leaves grown at 0% shade in both glasshouse and the open area in the field were significantly thicker than those at other light regimes. The number of cells between the upper and lower leaf surfaces increased with increase in light intensity.
THE EFFECT OF SHADE ON LEAF CHARACTERISTICS OF *MIKANIA MICRANTHA*

The size of epidermal cell of leaves grown under low light intensity increased appreciably. Palisade cell diameter also increased significantly with light intensity.

Upper Leaf Surface of* M. micrantha

The width of epidermal cells on the upper surface decreased appreciably with increasing light intensity (*Plate 2*). The epidermal cells of leaves from 0% shade in the glasshouse and open areas in the field were fewer than of leaves from 75% shade (Table 1). The wax on the upper leaf surface was generally flattened.

Wax Deposits on Leaf Surfaces

The average amount of chloroform-soluble wax from leaves under different shade levels is presented in Table 2. The quantity of epicuticular wax per unit area of leaves increased as the level of shade decreased: the amount from leaves under 0% shade was more than twice that from 75% shade.

Droplet Spread on Upper Leaf Surface

The area of spread of droplets on both young and old leaves at 75% shade was significantly greater than that at 0 and 50% shade (Table 3),

Table 1

<table>
<thead>
<tr>
<th>Leaf cell characters</th>
<th>Glasshouse</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>50%</td>
</tr>
<tr>
<td>Number of stomata per mm²</td>
<td>142a</td>
<td>75c</td>
</tr>
<tr>
<td>Upper surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower surface</td>
<td>597a</td>
<td>381b</td>
</tr>
<tr>
<td>Leaf thickness (µm)</td>
<td>207a</td>
<td>194b</td>
</tr>
<tr>
<td>Number of cells</td>
<td>7.8a</td>
<td>6.1bc</td>
</tr>
<tr>
<td>from upper to lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leaf surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average width of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidermal cell (µm)</td>
<td>32.6b</td>
<td>38.5a</td>
</tr>
<tr>
<td>Xylem (µm)</td>
<td>13.4b</td>
<td>20.9a</td>
</tr>
<tr>
<td>Phloem (x 10⁵ µm)</td>
<td>7.0a</td>
<td>8.5a</td>
</tr>
<tr>
<td>Mesophyll cell (µm)</td>
<td>25.2b</td>
<td>32.8a</td>
</tr>
<tr>
<td>Palisade cell (µm)</td>
<td>60.6a</td>
<td>54.4b</td>
</tr>
</tbody>
</table>

Within each row, values sharing the same letter are not significantly different at 5% level, according to Duncan's multiple range test.
TABLE 2

Effect of shading on the quantity of epicuticular wax deposits on the leaf surface of *Mikania micrantha*

<table>
<thead>
<tr>
<th>Shade Level</th>
<th>Mean Weight of Epicuticular Wax (μg cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>8.2a</td>
</tr>
<tr>
<td>50%</td>
<td>5.2b</td>
</tr>
<tr>
<td>75%</td>
<td>3.4a</td>
</tr>
</tbody>
</table>

Within each column, values sharing the same letter are not significantly different according to Duncan's multiple range test.

but there was no significant difference between 0 and 50% shade on young leaves.

Spray Retention of Imazapyr on M. micrantha Leaves

There was a trend towards increased retention of imazapyr with shade (Table 4). Plants under 75% shade retained more than three times that from 0% shade (Table 4).

DISCUSSION

Plants grown under high light intensities showed differences in leaf surface structure from those grown at low light intensities (Table 1). High light intensity reduces leaf expansion resulting in thicker leaves. Boardman (1977) found that leaves of *Atriplex patula* grown at 20 mw cm⁻² were seven cells thick compared with three or four cells in leaves grown at 2 mw cm⁻². The mesophyll cells grown under low light intensity were smaller and more densely packed and there were fewer vascular strands. The size of the epidermal cell of *M. micrantha* was considerably smaller under high light intensity.

Shade was observed to play an important role in the development of the epicuticular waxes of *M. micrantha*. A greater deposit of epicuticular wax was found under higher light intensities.
(Table 2). Skoss (1955) found that shaded leaves of ivy (*Hedera helix*) had less cuticle and wax than those exposed to full sunlight. Martin and Juniper (1970) also reported that wax production on soybean (*Glycine max*) leaves increased with light intensity. Significant increase in wax of field bindweed (*Convolvulus arvensis*) leaves was also reported under high light intensities (Steward *et al.* 1986).

A significant increase in the droplet spread was observed on leaves from shaded plants (Table 3). Dorschner and Buchholtz (1956) found that shading by companion crops increased the wettability of alfalfa (*Medicago sativa*) leaves. In the present study, wettability was significantly correlated with differences in quantity and density of the epicuticular wax crystals, and to the size of the epidermal cells of *M. micrantha*.

There was a trend toward greater retention of imazapyr on *M. micrantha* leaf surfaces grown under shade (Table 4). Differential spray retention is dependent on leaf surface characteristics and the angle of incident of the spray droplet to the leaf (Ennis *et al.* 1952; Brunskill 1956; Blackman 1958). Ennis *et al.* (1952) reported that the waxy layer on the leaf was an important characteristic affecting spray droplet repulsion. In this study, the waxy layer of *M. micrantha* leaves grown at high light intensities repelled spray droplets more effectively than those grown at lower light intensity. In heavily waxed leaves, Brunskill (1956) showed that spray droplets bounced off the leaf because the angle of incidence had decreased. This may be the main explanation why more imazapyr is retained on the leaf surface of *M. micrantha* grown under lower light intensity and which are less waxy. In addition *M. micrantha* at 0 and 50% shade levels had leaves which were slightly erect and facilitated runoff, whereas at 75% shade, the leaves were oriented horizontally, bigger and proportionally longer. Less bounce of droplets should occur at 75% shade, which may contribute to the greater spray retention observed at 75% shade.

Changes in morphology, surface structure and histological characteristics influence retention of imazapyr on plants exposed to different shade levels. Price and Ipor (1990) reported that leaves of *Paspalum conjugatum* grown under low light intensity (75% shade) had significantly increased uptake and translocation of imazapyr, and ascribed this to the thinner leaves with higher permeability. Uptake and translocation have repeatedly been shown to account for the effectiveness of herbicides (Jensen 1982). The greater susceptibility of plants growing under higher shade levels means that a smaller quantity of the herbicide and less frequent application of herbicide are needed.

REFERENCES

(Received 15 October 1991)
(accepted 3 November 1995)