

UNIVERSITI PUTRA MALAYSIA

RADIATION SYNTHESIS AND CHARACTERIZATION OF MICRO AND NANO PARTICLES OF ACRYLATED PALM OLEIN FOR USE IN DRUG DELIVERY

RIDA ANAK TAJA

FS 2013 2

RADIATION SYNTHESIS AND CHARACTERIZATION OF MICRO AND NANO PARTICLES OF ACRYLATED PALM OLEIN FOR USE IN DRUG DELIVERY

By

RIDA ANAK TAJAU

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

January 2013

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

RADIATION SYNTHESIS AND CHARACTERIZATION OF MICRO AND NANO PARTICLES OF ACRYLATED PALM OLEIN FOR USE IN DRUG DELIVERY

By

RIDA ANAK TAJAU

January 2013

Chair: Nor Azowa binti Ibrahim, PhD Faculty: Science

Emulsion polymerization and crosslinking reaction of acrylated palm olein (APO) in the presence of anionic and nonionic group surfactants were carried out by gamma irradiation. The critical micelle concentration (CMC) and formation of micro micelles as well their properties were determined their relationship to the control parameters such as APO and surfactant concentration, storage time and irradiation effect. The dynamic light scattering (DLS), fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) were used to characterize the size, the irradiation effect and the chemical structure of the micro and nanoparticle.

Size of the APO micro and nanoparticles can be varied by changing the formulation and the irradiation dose. Size of the APO micro and nanoparticle is in the range of 77 to 500 nanometer (nm) when the system was irradiated with gamma ray at irradiation doses from 0.36 to 25 kGy.

Using thymoquinone as a model bioactive compound, a drug loaded APO micro and nanoparticles were synthesized. Size of the thymoquinone-loaded APO micro or nanoparticle was in the range of 140 to 300 nanometer after irradiation using gamma irradiator. The presence of the bioactive and surface active compounds in the micro and nanomicelles determined the particle size and stability, and the bioactive release rate.

This radiation-induced method provides a free initiator induced and easy to control process as compared to that of the classical or chemical initiator process. This study showed that radiation-induced initiator method which involves polymerization and crosslinking in the microemulsion is very promising for the synthesis of micro and nanoparticles.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SINTESIS PENYINARAN DAN PENCIRIAN MIKRO DAN NANO PARTIKEL MINYAK SAWIT OLEIN TERAKRILAT UNTUK KEGUNAAN PENGHANTARAN UBAT

Oleh

RIDA ANAK TAJAU

Ja<mark>n</mark>uari 2013

Pengerusi: Nor Azowa binti Ibrahim, PhD Fakulti: Sains

Pempolimeran emulsi dan tautsilang minyak sawit olein terakrilat (APO) bersama surfaktan anionik dan bukan ionik dilakukan dengan kaedah sinaran. Pembentukan pada kepekatan misel genting (CMC) dan misel-mikro dikaitkan dengan saiz partikel ke atas kesan parameter seperti kepekatan APO dan surfaktan, kesan penstoran dan kesan sinaran telah dikaji. Kaedah seperti penyelerakan cahaya dinamik (DLS), spektrokospi inframerah (FTIR) dan mikroskopi transmisi elektron (TEM) digunakan untuk pencirian saiz, kesan dos penyinaran dan struktur kimia partikel mikro dan nano.

Pada dan di atas kepekatan misel genting (CMC), pelbagai kepekatan makromonomer (APO) diformulasikan untuk pembetukan sistem misel-mikro. Misel-mikro pada CMC telah dipilih untuk kajian lanjut penyelidikan ke atas pembetukan tautsilang dalam dan antara molekul.

Saiz partikel mikro dan nano APO adalah pelbagai dan bergantung kepada formulasi dan dos penyinaran terhadap sampel. Saiz partikel mikro dan nano APO adalah di antara 77 hingga 500 nanometer (nm) selepas disinarkan terhadap penyinaran gamma pada dos penyinaran yang berbeza di antara 0.36 hingga 25 kGy.

Timokuinon telah digunakan sebagai bahan aktif dalam sistem mikro-nano misel yang telah dibangunkan di atas. Kehadiran sebatian bioaktif dalam mikro-nano misel menentukan saiz partikel dan perlepasan sebatian bioaktif. Saiz partikel mikro dan nano APO yang mengandungi timokuinon adalah di antara 140 to 300 nanometer selepas disinarkan menggunakan penyinaran gamma.

Kaedah rangsangan-sinaran yang digunakan dalam kajian ini adalah bebas daripada penggunaan bahan kimia dan proses adalah mudah berbanding kaedah klasik atau proses kimia. Kajian ini menunjukkan kaedah sinaran untuk pempolimeran dan tautsilang mikroemulsi berpontesi besar digunakan untuk penghasilan partikel mikro dan nano.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to my supervisors, Dr. Nor Azowa binti Ibrahim, the chairman of my Supervisory Committee, for her guidance, encouragement and contribution to this project. My deepest appreciation goes to Professor Dato' Dr. Wan Md Zin bin Wan Yunus, Dr. Khairul Zaman bin Hj. Mohd. Dahlan, Mr. Mohd Hilmi bin Mahmood and Professor Dr. Maznah binti Ismail for their scientific guidance, support and supervision. All of the invaluable advices, ideas, suggestions, attention and time from them were reflected throughout my report with great success. I also acknowledges to the staff of Technical University of Lodz, Poland, *i.e.*, Prof. J. M. Rosiak and Prof. P. Ulanski for their valuable assistant during the preliminary work of this project prior to Master Science study at UPM.

I also sincerely acknowledge the Government of Malaysia through the Ministry of Science, Technology and Innovation (MOSTI) for their financial (SCIENCEFUND: 03-03-01-SF0052) and technical support in implementing this study. The scholarship (Hadiah Latihan Persekutuan) from Public Service Department (JPA) of the Government of Malaysia is greatly appreciated for sponsoring this Master Science study. Particularly, I gratefully acknowledges the grants (HRD Fund-RMK9) provided by the Malaysian Nuclear Agency (Nuclear Malaysia) for the project (MINT R&D 05-025-01).

In addition, I also like to express my deep appreciation to all my fellows at Malaysian Nuclear Agency and individuals around me in giving help and cooperation to me. Also my special thanks goes to my friends, Sarada Idris, Mek Zah Salleh, Norzita Yacob, Norhashidah Talip and Maznah Mahmood for their wonderful encouragement and support.

Last but not least, I warmly thanks to my parents, Aba Tajau and Ama Sangau, my siblings: Dorothy, Semille, Debbie and Maria, aunt, Ama Yong, my brother-in-law and sister-in-law, Johnny and Hilda, nephews, Michelle, Sheane, Jaster, Shoane, Jaswel, relatives and my best friend Clare Latifah for their love, understanding and encouragement during my study.

I certify that an Examination Committee has met on **date of viva voce** to conduct the final examination of **Rida anak Tajau** on her **degree** thesis entitled "**Radiation synthesis and characterization of micro and nano particles of acrylated palm olein for use in drug delivery**" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Mahiran binti Basri, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohamad Zaki bin Abd Rahman, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Siti Mariam binti Mohd Nor, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Jumat bin Salimon, PhD

Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (External Examiner)

Seow Heng Fong, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 30 April 2013

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nor Azowa binti Ibrahim, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Wan Md Zin bin Wan Yunus, PhD

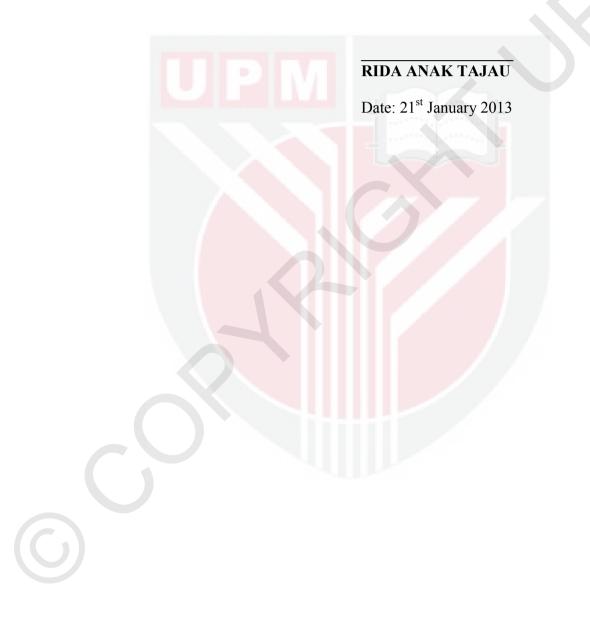
Professor Centre for Defence Foundation Studies National Defence University of Malaysia (Member)

Mohd Hilmi bin Mahmood, MSc

Senior Research Officer Radiation Processing Technology Division Malaysian Nuclear Agency (Member)

Maznah binti Ismail, PhD

Professor Institute of Bioscience Universiti Putra Malaysia (Member)


BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TABLE OF CONTENTS

ABSTRACT ABSTRAK ACKNOWI APPROVAL DECLARAT LIST OF TA LIST OF FI LIST OF AL	LEDGE L TION ABLES GURE	s	Page ii iv vi viii x xiv xiv xv xix	
CHAPTER			~	
1	INTI	RODUCTION	1	
2	LITH	ERATURE REVIEW	6	
	2.1	Radiation processing technology	6	
		2.1.1 Radiation Chemistry in polymer	8	
		2.1.2 Formation of the nanoparticles by	14	
		microemulsion polymerization initiated gamma ray		
	2.2	Palm oil	16	
		2.2.1 Acrylated palm olein (APO)	19	
	2.3	Surfactant	23	
		2.3.1 Critical micelle concentration and micelle	25	
		2.3.2 Critical micelle concentration of the SDS and	27	
		the PF127		
	2.4	Microemulsion	29	
		2.4.1 Type of microemulsion	32	
		2.4.2 Microemulsions formed by anionic and	33	
		nonionic surfactants		
	2.5	Oils used in microemulsions preparation for uses	36	
		in drug delivery		
	2.6	Characterization of the nanoparticles	39	
		2.6.1 Scattering technique - Dynamic light scattering	39	
		2.6.2 Microelectrophoresis	40	
		2.6.2.1 Zeta potential	40	
		2.6.3 Microscopy - TEM	42	
		2.6.4 Spectroscopy - Infrared spectroscopy	44	
3	MATERIALS AND METHODOLOGY			
	3.1	Materials	46	
	3.2	Methodology	48	
		3.2.1 Producing of the APO	48	
		3.2.2 Irradiation of the APO	50	

	3.2.3	Preparation of the oil-in-water microemulsions	50
	3.2.4	Radiation synthesis of the nanoparticles	51
	3.2.5	Incorporation of thymoquinone in APO nanoparticles	51
	3.2.6	Radiation synthesis of TQ-loaded APO nanoparticles	52
	3.2.7	Characterization of EPO and APO	53
	5.2.1	3.2.7.1 Acid value test	53
			53 54
		3.2.7.2 Oxirane oxygen content test 3.2.7.3 Average number of molecular	57
		weight analysis 3.2.7.4 Fourier transform infra red spectrum	58
		-	59
	220	3.2.7.5 Determination of gel content Determination of CMC of the surfactant	59 60
	3.2.8		60
	220	solution and the oil-in-water microemulsions	(1
	3.2.9	Characterization of the APO nanoparticle and	61
		the thymoquinone-loaded APO nanoparticle	(1
		3.2.9.1 Particle size measurements	61
		3.2.9.2 Zeta potential measurement	61
		3.2.9.3 Particle size stability measurements	62
		3.2.9.4 Particle drying	62
		3.2.9.5 Fourier transform infrared spectroscopy	62
		3.2.9.6 Transmission electron microscopy	63
		3.2.9.7 Determination of ternary phase diagram	63
	3.2.10	Release profile	63
		3.2.10.1 Preparation of PBS solution	63
		3.2.10.2 Determination of the calibration plot of the thymoguinone	64
		3.2.10.3 Release profile of thymoquinone	65
4 RESULTS		SCUSSION	67
4 KESULIS 4.1			67 67
4.1		esis of EPO and APO derived from rbd palm olein	
		Synthesis of EPOP	67 72
10	4.1.2	Synthesis of APO	72 79
4.2		tion crosslinking/curing of APO and their eteristic	78
	4.2.1	Intermolecular crosslinking of APO	78
		4.2.1.1 Gel permeation chromatography	80
		4.2.1.2 FTIR spectroscopy and gel content	83
4.3	Forma	tion of the micelle systems	88
	4.3.1	Interaction of the surfactant micelle and the mixed surfactant and APO micelle in an aqueous solution	88
	4.3.2	Determination of CMC of the surfactants micelle and the mixed APO and surfactants micelle in an aqueous solution	92
	4.3.3	Particle size of the surfactants micelle and the	97

	mixed APO and surfactants micelle in an	
	aqueous solution	
	4.3.4 TEM image of the surfactants micelle and the	104
	mixed APO and surfactants micelle	
	4.3.5 Storage effect of the APO microemulsion in	110
	an aqueous solution	
4.4	Radiation synthesis of APO micro and nanoparticles	115
	4.4.1 Formation of the APO micro and nanoparticles	115
	4.4.1.1 Crosslinking interaction of the APO	115
	molecule in the mixed APO and	
	surfactant micelle	
	4.4.1.2 Effect of the irradiation dose	119
	4.4.1.3 Effect of the APO volume	125
	4.4.1.4 Effect of the surfactant concentration	128
	4.4.1.5 FTIR study	132
	4.4.1.6 TEM study	139
	4.4.2 Effect of Type of Surfactant	143
4.5	Incorporation of model drug in APO nanoparticle	145
	4.5.1 Formation of TQ-loaded APO nanoparticle	145
	4.5.2 FTIR study	149
	4.5.3 TEM study	159
	4.5.4 Thymoquinone release profile	166
5 CONCLUSI FUTURE RI	ON AND RECOMMENDATIONS FOR ESEARCH	171
REFERENCES		175
REFERENCES		175 182
APPENDICES	lation of amount of materials for enovidation and	182
APPENDICES A Calcu	lation of amount of materials for epoxidation and	
APPENDICES A Calcu acryla	tion reactions	182 182
APPENDICES A Calcu acryla B Resul	tion reactions ts of the EPO and the APO properties	182 182 186
APPENDICES A Calcu acryla B Resul C Resul	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation	182 182 186 188
APPENDICES A Calcu acryla B Resul C Resul D Resul	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed	182 182 186
APPENDICES A Calcu acryla B Resul C Resul D Resul APO-	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed surfactant micelle properties	182 182 186 188 195
APPENDICES A Calcu acryla B Resul C Resul D Resul APO- E Resul	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed surfactant micelle properties ts of the mixed APO-surfactant micelle	182 182 186 188
APPENDICES A Calcu acryla B Resul C Resul D Resul APO- E Resul prope	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed surfactant micelle properties ts of the mixed APO-surfactant micelle rties upon irradiation	182 182 186 188 195 199
APPENDICES A Calcu acryla B Resul C Resul D Resul APO- E Resul prope F Resul	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed surfactant micelle properties ts of the mixed APO-surfactant micelle	182 182 186 188 195
APPENDICES A Calcu acryla B Resul C Resul D Resul APO- E Resul prope F Resul TQ-lo	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed surfactant micelle properties ts of the mixed APO-surfactant micelle rties upon irradiation ts of the particle size and the release profile of baded APO nanoparticles	182 182 186 188 195 199 209
APPENDICES A Calcu acryla B Resul C Resul D Resul APO- E Resul prope F Resul TQ-lo BIODATA OF STU	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed surfactant micelle properties ts of the mixed APO-surfactant micelle rties upon irradiation ts of the particle size and the release profile of baded APO nanoparticles	182 182 186 188 195 199 209 213
APPENDICES A Calcu acryla B Resul C Resul D Resul APO- E Resul prope F Resul TQ-lo BIODATA OF STU LIST OF PUBLICA	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed surfactant micelle properties ts of the mixed APO-surfactant micelle rties upon irradiation ts of the particle size and the release profile of baded APO nanoparticles	182 182 186 188 195 199 209 213 214
APPENDICES A Calcu acryla B Resul C Resul D Resul APO- E Resul prope F Resul TQ-lo BIODATA OF STU	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed surfactant micelle properties ts of the mixed APO-surfactant micelle rties upon irradiation ts of the particle size and the release profile of baded APO nanoparticles	182 182 186 188 195 199 209 213
APPENDICES A Calcu acryla B Resul C Resul D Resul APO- E Resul prope F Resul TQ-lo BIODATA OF STU LIST OF PUBLICA	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed surfactant micelle properties ts of the mixed APO-surfactant micelle rties upon irradiation ts of the particle size and the release profile of baded APO nanoparticles	182 182 186 188 195 199 209 213 214
APPENDICES A Calcu acryla B Resul C Resul D Resul APO- E Resul prope F Resul TQ-lo BIODATA OF STU LIST OF PUBLICA	tion reactions ts of the EPO and the APO properties ts of the APO properties upon irradiation ts of the surfactants micelle and the mixed surfactant micelle properties ts of the mixed APO-surfactant micelle rties upon irradiation ts of the particle size and the release profile of baded APO nanoparticles	182 182 186 188 195 199 209 213 214