UNIVERSITY PUTRA MALAYSIA

EFFECTS OF SYNTHETIC HORMONES ON BREEDING PERFORMANCE OF MALAYSIAN MAHSEER (TOR TAMBROIDES BLEEKER) IN CAPTIVITY

NIK MD. AZUADI B. NIK DAUD

FP 2013 3
EFFECTS OF SYNTHETIC HORMONES ON BREEDING PERFORMANCE OF MALAYSIAN MAHSEER (TOR TAMBROIDES BLEEKER) IN CAPTIVITY

By

NIK MD. AZUADI B. NIK DAUD

Thesis submitted to the School of Graduate Studies Universiti Putra Malaysia, in fulfillment of the requirements for the degree of Master of Science

January 2013
EFFECTS OF SYNTHETIC HORMONES ON BREEDING PERFORMANCE OF MALAYSIAN MAHSEER (TOR TAMBROIDES BLEEKER) IN CAPTIVITY

By

NIK MD. AZUADI B. NIK DAUD

January 2013

Chair: Professor Siti Shapor Siraj, PhD

Faculty: Agriculture

Plasma sex steroids and breeding performances of *Tor tambroides* were studied. Filial generation one (F₁) broodstocks (range body weight of 1.4 to 4.4 kg and range total length 43.9 to 73.0 cm) were used for artificial propagation. All females were given pretreatment with Ovaplan (23.4-44.9 µg kg⁻¹) for 6 weeks prior to induction. Selected synthetic hormones such as Ovaprim, Ovatide, Luteinizing hormone releasing hormone analogue (LHRHa), human chorionic gonadotropin (HCG), salmon gonadotropin releasing hormone analogue (sGnRHa/OvaRH), and carp pituitary extract (CPE) were used for the induction and the effect of hormones on breeding performance and larval quality of *Tor tambroides* were then evaluated. The best hormone from this induction was chosen to test its effectiveness at various dose levels in inducing ovulation of *T. tambroides*. In order to investigate what factors improve breeding performance of *T. tambroides*, an experiment was conducted to test the effect of dopamine antagonist domperidone (DOM) to accelerate the maturation and ovulation. Blood were collected from each treated female breeders at
0 h (prior to administration), 6, 12 and 24 h post injection. Plasma sample were analyzed for Testosterone (T) and 17β-estradiol (E2) concentrations using Enzyme Link Immunosorbent assay (ELISA). Ovulatory response, fertilization rate, hatching rate, and survival rate were determined and data for plasma steroid hormones were analyzed using analysis of variance (ANOVA).

The results showed that Ovatide (0.5 mL/kg BW) was the most reliable in inducing ovulation in female *T. tambroides* with highest (p < 0.05) breeding performance (egg and larval qualities) overshadowing the other tested hormones. Ovaprim (0.5 mL/kg BW) was next best followed by OvaRH (10 µg/kg BW). No ovulation occurred in the group treated with LHRHa (10 µg/kg BW), HCG (1000 I.U/kg BW) and CPE (10 mg/kg BW). Ovatide was further chosen to test its effectiveness at various dose levels in inducing ovulation of *T. tambroides*. The result indicated that the total stripped eggs and fecundity were significantly highest (p < 0.05) when females were treated with Ovatide at a dose of 0.5 mL/kg BW compared to those administered at other levels, with values of percent fertilization, hatching, survival and normal larvae of 88, 84, 81 and 74%, respectively. Dose of higher or lower than 0.5 ml/kg BW Ovatide resulted in over ripening of ova and partial ovulation leading to production of higher deformed larvae.

Sex steroids plasma concentration of T and E2 increased significantly in association with ovulation. The levels fluctuated and reached a peak at 12 h, then dropped dramatically at 24 post injection (PI). In contrast in the non-ovulated groups; LHRHa (10 µg/kg BW), CPE (10 mg/kg BW), HCG (1000 I.U /kg BW) and DOM (5 mg/kg BW), the sex steroids hormone concentration showed little increment after injection
and rose at 12 h PI, then slowly dropped at 24 h PI. Changes in sex steroids hormone level after hormone induction lead to vitellogenesis, oocyte development and ovulation in female breeders.

This study will provide an insight into sex hormone steroids variations during oocyte development and these results provide important basic information and possible use of plasma parameters as predictive factors of the success of hormonally induced ovulation in *T. tambroides* in captivity.
Steroid seks plasma dan prestasi pembiakan Tor tambroides betina dikaji. Baka generasi pertama (F₁) (julat berat badan daripada 1.4 kepada 4.39 kg dan julat jumlah panjang daripada 43.9 kepada 73 cm) digunakan untuk pembiakan tiruan. Kesemua betina telah diberi prarawatan dengan Ovaplant (23.4-44.9 µg kg⁻¹) selama 5-6 minggu sebelum induksi. Hormon-hormon terpilih seperti Ovaprim, Ovatide, analog hormon perembesan hormon luteinizing (LHRHa), gonadotropin korion manusia (HCG), analog hormon perembesan Gonadotropin salmon (sGnRHa/OvaRH), dan ekstrak pituitari kap (CPE) digunakan untuk aruhan dan kesan hormon ke atas prestasi pembiakan dan kualiti larva Tor tambroides dinilai. Hormon yang paling berpotensi dari aruhan ini dipilih untuk menguji keberkesanan pada pelbagai tahap dos dalam mendorong ovulasi T. tambroides. Dalam usaha untuk menyiaskan apakah faktor meningkatkan prestasi pembiakan T. tambroides, satu eksperimen telah
dijalankan untuk menentukan kesan antagonis dopamin domperidone (DOM) bagi mempercepatkan kematangan dan ovulasi. Darah dikumpulkan dari setiap induk betina yang dirawat pada 0 h (sebelum suntikan), 6, 12 dan 24 jam selepas suntikan. Sampel plasma dianalisis untuk mengetahui kepekatan Testosteron (T) dan 17β-estradiol (E2) dengan menggunakan teknik *Enzyme Link Immunosorbent assay* (ELISA). Tindak balas ovulasi, kadar persenyawaan, kadar penetasan dan kadar kemandirian dikira dan data bagi kadar plasma hormon steroid dianalisis menggunakan *analysis of variance* (ANOVA).

Hasil kajian menunjukkan bahawa Ovatide (0.5 mL / kg BT) adalah yang paling berpotensi dalam mendorong ovulasi dalam *T. tambroides* betina dengan prestasi pembiakan (kualiti telur dan larva) tertinggi (p < 0.05) membayangi hormon-hormon lain yang diuji. Ovaprim (0.5 mL / kg BT) adalah hormon yang seterusnya terbaik diikuti oleh OvaRH (10 μg / kg BT). Ovulasi tidak berlaku dalam kumpulan yang dirawat dengan LHRHa (10 μg / kg BT), HCG (1000 iu / kg BT) dan CPE (10 mg / kg BT). Ovatide kemudian dipilih untuk diuji keberkesanan pada pelbagai tahap dos dalam mendorong ovulasi *T. tambroides*. Hasil menunjukkan bahawa jumlah telur dilucutkan dan kadar kesuburan ketara tertinggi (p < 0.05) apabila betina dirawat dengan Ovatide pada kadar dose 0.5 mL / kg BT berbanding dengan yang disuntik di peringkat lain, dengan nilai peratus persenyawaan, penetasan, kemandirian dan kenormalan larva 88, 84, 81 dan 74%, masing-masing. Apabila dos yang lebih tinggi dan lebih rendah daripada 0.5 ml / kg BT Ovatide disuntik ia menyebabkan ova terlebih matang dan ovulasi pertengahan membawa kepada penghasilan larva cacat yang lebih tinggi. Oleh itu, kepekatan 0.5 mL / kg BT Ovatide didapati optimum untuk mendorong ovulasi *T. tambroides* dalam kurungan.
Kepekatan plasma steroid seks T dan E₂ meningkat dengan ketara setara dengan ovulasi. Tahapnya naik turun dan mencapai kemuncaknya pada 12 jam, kemudian jatuh secara mendadak pada 24 jam selepas suntikan (SS). Berbeza dalam kumpulan yang tiada ovulasi; LHRHa (10 μg / kg BW), CPE (10 mg / kg BT), HCG (1000 iu kg BT /) dan DOM (5 mg / kg BT), kepekatan hormon seks steroid menunjukkan peningkatan sedikit selepas suntikan dan meningkat pada 12 jam SS, kemudian perlahan-lahan jatuh pada 24 jam selepas suntikan. Perubahan dalam tahap hormon steroid seks selepas induksi hormon akan membawa kepada vitellogenesis, pembangunan oosit dan ovulasi dalam induk betina.

Kajian ini akan memberi penjelasan kepada variasi steroid hormon seks semasa pembangunan oosit dan keputusan ini menyediakan maklumat asas yang penting dan kemungkinan penggunaan parameter plasma sebagai faktor ramalan kejayaan ovulasi diaruhkan hormon T. tambroides dalam kurungan.
ACKNOWLEDGEMENTS

All praise to Almighty Allah and the Merciful. The completion of this study would not been possible had it not been due to His favor and will.

This study provided a big challenged for me and without good supervision and good people around me, I feel it is hard for me to go through. I would like to extend my sincerest gratitude to my supervisor Prof. Dr. Siti Shapor Siraj, who gives me good support and expert guidance. In addition, she always gives me inspiration to complete this research with her enthusiasm and perpetual energy in research. Also sincere thanks to my co-supervisor Associate Professor Dr Siti Khalijah Daud, Dr. Annie Christianus and Prof. Dr. Sharr Azni Harmin for generating ideas of the whole research, provide comments and provided valuable help in interpretation of results.

I would like to thanks Lu Thian Tack from LTT Aquaculture Farm, Asajaya, Sarawak for generously supplying the broodstock. A special thanks to Muhammad Zaidi Dini, Chai Fook Ngian and Chai Nyong Jee from LTT Aquaculture Farm for helping out sampling of the fish and technical assistance. I want to extend my thanks to Dr. Stephen Sungan, Mr. Awang Alim and Mr. Raymond Britin from Tarat Indigenous Fisheries Production and Research Center (IFPRC) farm, Serian, Sarawak for their kindness lending their hand during the experiments.

To all my colleagues in Aquaculture Deparment, UPM it has been grateful to work with all of you. I’m grateful thanks to Norhidayah Mohd Taufek, Nurul Ashikin Mohamad, Mohammad Fadhil Syukri Ismail, Noor Fazielawanie Mohd Rashid,
Zalina Ismail and Nurhidayu Al-saari for their invaluable advices, support and assistance in completing my study. Special thanks to Mr. Abdullah Abdul Rahim from Aquaculture Department, UPM for his support and advices during the research. My thanks extended to staff at Aquaculture Department, Ms. Nor Azlina Nordin, Mrs. Nur Shafika Maulad Abd Jalil, Mr. Mohd Jasni Yusoff, Mrs. Zaiton Basar and Mr. Azmi Yaacob for their help.

My deepest gratitude goes to my family. To my mother, Rubiah Ibrahim and my father Nik Daud Nik Soh, I sincerely appreciate your support and prayers for me in every minute for my success. To my brothers and sisters, thanks for understanding and unconditional love.

A billion thanks go to Agri-Biotechnology Institute (ABI) for financial support and without the grant this research quite impossible to accomplish.
I certify that an Examination Committee met on 17 February 2013 to conduct the final examination of Nik Md. Azuadi B. Nik Daud on her Master of Science thesis entitled “Evaluation of synthetic hormones on breeding performance of Malaysian mahseer, *tor tambroides* (Bleekers 1854) kept in captivity” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree.

Member of the Examination Committee are follows:

Muta Harah Zakaria, PhD  
Faculty of Agriculture,  
Universiti Putra Malaysia  
(Chairman)

Hassan Hj Mohd Daud, PhD  
Faculty of Veterinary Medicine,  
Universiti Putra Malaysia  
(Internal)

Halimatun Yaakub, PhD  
Faculty of Agriculture,  
Universiti Putra Malaysia  
(Internal)

Siti Azizah Mohd. Nor, PhD  
School of Biological Science  
Universiti Sains Malaysia  
Pulau Pinang  
(External)

--------------------------------------------------
SEOW HENG FONG, PhD  
Professor and Deputy Dean  
School of Graduate Studies  
Universiti Putra Malaysia  

Date:  

x
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirements for the degree of Master of Science. The members of the supervisory Committee are as follows.

**Siti Shapor Siraj, PhD**  
Professor  
Faculty of Agriculture,  
Universiti Putra Malaysia,  
Malaysia  
(Chairman)

**Khalijah Daud, PhD**  
Associate Professor  
Faculty of Science,  
Universiti Putra Malaysia,  
Malaysia  
(Member)

**Annie Christianus, PhD**  
Senior Lecturer  
Faculty of Agriculture,  
Universiti Putra Malaysia,  
Malaysia  
(Member)

**Sharr Azni Harmin, PhD**  
Professor  
Faculty of Science and Biotechnology,  
Universiti Industri Selangor,  
Malaysia  
(External member)

--------------------------------------

BUJANG BIN KIM HUAT,PhD  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is on my original work for quotation and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at University Putra Malaysia or other institutions.

-------------------------------------------
NIK MD. AZUADI B. NIK DAUD

Date: 17 January 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Aquaculture industry</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Biology of mahseer</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Reproduction in fishes</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Synthesis of sex steroid hormones (17-β estradiol and Testosterone)</td>
<td>13</td>
</tr>
<tr>
<td>2.5 Reproductive dysfunction in cultured fish</td>
<td>16</td>
</tr>
<tr>
<td>2.6 Hormonal induction and spawning</td>
<td>18</td>
</tr>
<tr>
<td>2.7 Application of GnRHa in cultured fish</td>
<td>19</td>
</tr>
<tr>
<td>2.8 The use of dopamine antagonist with GnRHa on oocyte maturation</td>
<td>20</td>
</tr>
<tr>
<td>2.9 Synthetic hormone for ovulation and spawning induction</td>
<td>21</td>
</tr>
<tr>
<td>3 GENERAL METHODOLOGY</td>
<td>24</td>
</tr>
<tr>
<td>3.1 Experimental fish and maintenance</td>
<td>24</td>
</tr>
<tr>
<td>3.2 Fish selection and indentification</td>
<td>24</td>
</tr>
<tr>
<td>3.3 Hormone preparation and administration</td>
<td>25</td>
</tr>
<tr>
<td>3.4 Blood sampling procedure</td>
<td>27</td>
</tr>
<tr>
<td>3.5 Artificial propagation</td>
<td>29</td>
</tr>
<tr>
<td>3.6 Eggs and larval quality measurements</td>
<td>31</td>
</tr>
<tr>
<td>3.7 Water quality parameter</td>
<td>32</td>
</tr>
<tr>
<td>3.8 Steroid Enzyme-linked Immunosorbent Assay</td>
<td>32</td>
</tr>
<tr>
<td>3.8.1 Pre-assay preparation</td>
<td>32</td>
</tr>
<tr>
<td>3.8.2 Assay protocol</td>
<td>33</td>
</tr>
<tr>
<td>3.8.3 Plate Set-Up</td>
<td>35</td>
</tr>
<tr>
<td>3.8.4 ELISA analysis</td>
<td>36</td>
</tr>
<tr>
<td>3.9 Statistical analysis</td>
<td>37</td>
</tr>
</tbody>
</table>
4 EVALUATION OF SYNTHETIC HORMONES ON BREEDING PERFORMANCE OF MALAYSIAN MAHSEER, *Tor tambroides* (BLEEKER 1854) KEPT IN CAPTIVITY

4.1 Introduction 38
4.2 Objectives of the study 42
4.3 Materials and Methods 43
4.4 Results 45
4.5 Discussion 59
4.6 Conclusion 69

5 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

REFERENCES 72
BIODATA OF STUDENT 84
LIST OF PUBLICATIONS 85