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ABSTRAK

Kajian ini membandingkan prestasi peramalan di antara model ketaklinearan Autoregresi
Berperalihan Licin (Smooth Transition Autoregressive atau STAR) dengan model linear siri masa
iaitu model Autoregresi (Autoregressive atau AR) sebagai peramal kadar pertukaran Ringgit-Yen.
Berdasarkan kepada prosedur penentuan kelinearan piawai, kami memperoleh bukti empirik
bahawa penyelarasan Ringgit-Yen ke arah keseimbangan pariti kuasa beli (Purchasing Power
Parity) adalah secara tidak linear. Dari segi prestasi peramalan, keputusan empirik menunjukkan
bahawa model STAR dan AR mempunyai purata mutlak ralat ramalan (mean absolute forecast
error atau MAFE), purata mutlak perarus ralat ramalan (mean absolute percentage forecast error
atau MAPFE) dan purata punca kuasa dua ralat ramalan (mean square forecast error atau
RMSFE) yang lebih kecil jika dibanding dengan model SRW. Keputusan yang diperoleh juga
menunjukkan ramalan model STAR lebih baik jika dibandingkan dengan pesaing linearnya, iaitu
model AR. Hasil kajian ini adalah konsisten dengan penyelidikan yang memberi penekanan
kepentingan membenarkan pelarasan yang tidak linear bagi kadar pertukaran asing ke arah
keseimbangan jangka panjang.

ABSTRACT

This study compares the performance of Smooth Transition Autoregressive (STAR) non-linear
model and the conventional linear Autoregressive (AR) time series model in forecasting the
Ringgit-Yen rate. Based on standard linearity test procedure, we find empirical evidence that the
adjustment of the Ringgit-Yen rate towards its long-run Purchasing Power Parity equilibrium
follows a non-linearity path. In terms of forecasting ability, results of this study suggest that both
the STAR and AR models exceed or match the performance of SRW model based mean absolute
forecast error (MAFE) mean absolute percentage forecast error (MAPFE) and mean square
forecast error (RMSFE). The results also show that the STAR model outperforms the AR model,
its linear competitor. Our finding is consistent with the emerging line of research that emphasised
the importance of allowing non-linearity in the adjustment of exchange rate toward its long run
equilibrium.

INTRODUCTION econometrics is  progressing

rapidly

In 1926, Yule first formally introduced the time
series model in the form of autoregressive (AR)
model, which assumes that the future values of
a variable depend solely on its historical values.
Since then, time series analysis has been viewed
as a powerful forecasting tool. In the past two
decades or so the theory of time series

(Montogomery et al. 1990). As the methodology
progresses, the issue of non-linearity was
incorporated into the analysis of time series.
Smooth Transition Autoregressive (STAR) model
is one of the most recent models developed
under this concept. The STAR model is a non-
linear time series model that allows the variable
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under investigation to move within two different
state spaces with a smooth transition process.
STAR offers an alternative to the modelling of
time series variables that exhibit non-linearities.

In our review of the literature, we found
that the application of the STAR model in
empirical works is still very limited, and its
forecasting performance particularly with
reference to exchange rates has yet to be
determined. Taylor and Peel (2000), Sarno
(2000a2) and Baum et al. (2001) are among the
first to demonstrate the usefulness of the STAR
in modelling exchange rate dynamics. However,
all these authors did not evaluate the forecasting
performance of the model. Hence, the main
objective of this study is to examine the
applicability of the STAR model to the Malaysian
Ringgit against the Japanese Yen (RM/YEN). In
addition, the present article compares the
forecasting performance of the STAR and AR
models by using the simple random walk (SRW)
model as the yardstick of comparison. This paper
extends previous studies by evaluating the
forecasting performance of the studied models
using mean absolute forecast error (MAFE),
mean absolute percentage forecast error
(MAPFE) and root mean square forecast error
(RMSFE).

We chose to apply the model to the
exchange rate for the following reasons: First,
the bulk of the literature shows that structural
models failed to outperform a simple random
walk (SRW) model, and attempts by analysts
using more elaborate models have also failed to
improve the forecast performances at short or
long run horizons significantly. Second, several
authors have argued that the failure of existing
exchange rate models to yield superior forecast
is because these models ignore the non-linearity
adjustment of exchange rates towards its
equilibrium value (Micheal et al. 1997; Taylor
and Peel 1997; Sarno 2000a,b; Coakley and
Fuertes 2001). These studies also argued that
the classical unit root tests may not be able to
detect mean reverting behaviour of exchange
rate if the variable is a stationary non-linear
process. Finally, in applying this model to the
Ringgit, we intend to broaden our understanding
on the appropriateness of the STAR model as a
forecasting tool in the currency markets.

This study models the adjustment process of
the deviations of Yen-based Ringgit movement
from its fundamental equilibrium as determined
by the Purchasing Power Parity (PPP) hypothesis.
Simply, the PPP hypothesis postulates that the
nominal exchange rate is given by the ratio of
the domestic and foreign price levels. It states
that exchange rates should tend to equalize
prices for identical goods in different countries.
Recent studies based on careful application of
time series econometrics methods, are more
supportive of the mean reverting behaviour of
exchange rates towards the long-run PPP
equilibrium value (M. Azali et al. 2001; Baum et
al. 2001)".

To anticipate our results, we find that RM/
YEN rate adjusts in a non-linear fashion towards
its long-run equilibrium path using the Lagrange
Multilpier (LM)-type test developed by Terasvirta
(1994). Unlike most of the earlier studies, we
find that both the STAR and AR models
outperform a random walk forecast for nominal
RM/YEN rate. In addition, the empirical results
suggest that the non-linear STAR model performs
better than the linear AR model in the out-
sample forecasts. The set out of the paper is
organised as follows. The first two sections offer
a brief review on the development of STAR
models and a discussion on the data used in the
analysis. The section that follows immediately
describes the linearity test and the test results.
We report and interpret the results of forecast
accuracy comparison just before offering some
concluding remarks in the last section.

THE STAR MODELS

The origin of the non-linear Smooth Transition
Threshold Autoregressive or just Smooth
Transition Autoregressive (STAR) model could
be traced back to the Threshold Autoregressive
(TAR) model first proposed by Tong in 1977
(see Tong and Lim 1980). The TAR model
assumes that a variable has different behaviour
within different regimes. The basic idea
underlying the TAR model is piecewise
linearisation of non-linear models over the state
space by the introduction of the thresholds. An
example of the TAR model is the Self-excited
TAR (or SETAR) model, which assumes that a

The stylized fact that emerged from this literature is that exchange rate adjusts non-linearly towards its long-run PPP

equilibrium (Mahajan and Wagner 1999; Sarno 2000a; Baum et al. 2001 and Coakley and Fuertes 2001).
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variable (say, exchange rate), y is a linear
autoregression within regime, but may move
between regimes depending on the value taken
by a lag of y, say y,, where d is known as delay
parameter. For two-regime case (¢q=2) where y,
follows an AR (p,) process in the one regime
and AR (p,) process in the other, the SETAR (2;
b 1) representation of can be written compactly
as:

Ve = ﬁo + ﬁlﬁiyt‘i +é&, + It—d(r)

[ﬁ;"iﬁ:}’l-.—*‘f?:-fu] )

where I(7) =1 if y,> rand 0 otherwise is the
threshold. For =1, 2, ¢, ~ G (0, 0} ) where G
() may be a Gaussian distribution but this is not
necessarily the case. g, for i =0, .., p, and B; for
i=0, .., p, are parameters to be estimated.

The introduction of non-linear time series
model such as SETAR model is motivated by the
fact that linear time series model should give
place to a much wider class of models if we were
to gain more understanding into the more
complicated phenomena such as limit cycles,
time irreversibility, amplitude-frequency
dependency and jump resonance (Tong and
Lim 1980). Since its introduction, few attempts
have been made in applying and validating the
SETAR mode, and hence the usefulness of the
model in empirical work is yet to be determined.
For instance, Diebold and Nason (1990) point
out that there is no guarantee that SETAR model
will perform better than linear AR model. A
similar view is expressed in Clements and Smith
(1997), where they note that neither in-sample,
nor the rejection of null of linearity in a formal
test in favour of non-linearity guarantees that
SETAR predicts more accurately than AR models.

The deficiency in SETAR is deemed due to
the unrealistic fixed threshold in the model.
The fixed threshold of SETAR model is later
replaced with a smooth function and thus leads
to the formation of STAR model in the early
1990s. STAR model allows the variable under
study to alternate between two different regimes
with a smooth transition function between these
regimes, so that there can be a continuum of
states between extreme regimes. STAR

representation is given by (Terdsvirta and
Anderson 1993):

»
¥ =Bo+ zlﬁiyt-i +

* * 2
(ﬁo + ﬁlﬂ.’yt-i)F()’:—d)“'E: )

where jy, is mean-corrected, f, and B;, are
constants, §,and f,i= 1, ..., p are autoregressive
parameters, F() is the transition function
depending on the lagged level, y,, , where d is
known as the delay length or delay parameter,
and ¢, is a white noise with zero mean and
constant variance o°.

For the application of STAR model, Granger
and Terasvirta (1993) have proposed exponential
function as one of the plausible transition
functions, thus resulting in the exponential STAR
or ESTAR model. The exponential function is
defined as:

F()’,_d) =] —CXP(-Y2()’¢-.1 - u)2 /éi) (3)

where ¥ is the unstandardized transition
parameter, u is the equilibrium or threshold
value of the mean corrected y, series and hence

E(u) = 0, and G}, is the estimated variance of y,

Note that f/éf, is the standardized

transition parameter and the speed of transition
between the two regimes is positively related to
the value of the transition parameter 2. In other
words, higher values of ¥ imply much faster
speed of transition. Taylor and Peel (2000) use
a version of transition function, F(') with &3, =
1. Nevertheless, Granger and Terasvirta (1993,
p- 124) argue that scaling the exponential term
by the sample variance speeds the convergence
and improves the stability of the non-linear least
squares estimation algorithm. It also makes it
possible to compare estimates of transition
parameter across equations.

The exponential transition function is
bounded between zero and one. Judging from
Equation 3, when 3, €quals its equilibrium value

u or when y/G?, goes to zero, F() = 0 and

Equation 2 reverts to a standard linear AR(p)
representation:
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¢

e =ﬁ0 +_2]ﬁiyl—i +¢&, (4)
c

In such case, the conventional restriction of

?
2B <1 applies so that y is mean-reverting.
i=1

For extreme deviations from the fundamental
equilibrium, F() = 1 (when ¥/ 6; approaches

infinity), and Equation 2 becomes a non-linear
AR (p) model:

p *
Y= (/30 + ﬁ0)+ 2 (ﬂ, + B )yt—i +&, (5)

i=1
If the non-linear model as in Equation 5 is the

correct specification, it is expected that Iﬁﬂ, =1l
i=1

such that y, may exhibit unit root behaviour but
the requirement for global stability is that

|ﬁ(ﬂ, +B;)l < 1 must be met.

The exponential F()) allows a smooth
transition between two regimes symmetry
adjustment for deviations above and below the
fundamental equilibrium. This function is
considered suitable for the non-linear modelling
of exchange rate as it has a number of attractive
properties. For instance, it can capture the
symmetrical response to positive and negative
deviations from its fundamental equilibrium
(Baum et al. 2001) by its inverted bell-shaped
distribution around zero. Despite the potential
usefulness of the ESTAR model in modelling
the exchange rate specifically and other non-
linearities in general, much more empirical work
has yet to be done to fill up the related literature.
To this end, there are only few published articles
on the STAR model. Moreover, most of them
are theoretical in nature and the application is
only for illustration purposes. Earlier works, for
instance by Chan and Tong (1986), Luukkonnen
et al. (1988), Saikkonen and Luukkonen (1988),
Luukonnen (1990), Terasvirta (1994) and
Eirtheim and Terasvirta (1996) discuss the
theoretical issues on the linearity tests and model
specification of the STAR models. One notable

exception is Terasvirta and Anderson (1993),
which evaluates the forecast performance of
ESTAR model, in the context of business cycles.

PRELIMINARY DATA ANALYSIS

The data used in this paper are end-of-period
nominal bilateral exchange rate for the Malaysian
Ringgit vis-a-vis the Japanese Yen (RM/YEN)
and relative price (P), which is constructed as
the ratio Consumer Price Index (CPI) of Malaysia
to CPI of Japan. The data are mainly from
International Monetary Fund’s International
Financial Statistics (IMF/IFS), comprising of
seasonally unadjusted observations. Our sample
period ranges from 1980:1 to 2000:2. The full
sample period is divided into two portions. The
first sub-period, which starts from 1980:1 and
ends in 1997:2 is used for the model estimation
purpose while the remaining observations are
kept for assessing the out-sample forecast
performance of the studied models®.

To test whether RM/YEN rate exhibits mean
reverting behaviour to its long-run PPP
equilibrium, we check for the cointegrating
relationship between the two price series.
However, prior to any cointegration test, the
series involved should be tested for stationarity
and order of integration beforehand. This is
important as only variables of the same order of
integration may provide a meaningful
relationship. The commonly used Augmented
Dickey-Fuller (ADF) and non-parametric Philips-
Perron (PP) unit root tests are employed for this
purpose. The results of the unit root tests as
summarised in Table 1 strongly suggest that the
variables are first difference stationary, which
implies they are all integrated of the same order,
that is, I(1). These results hold whether trend or
without trend.

Next, we proceed to investigate whether or
not the long-run PPP conditions hold using the
Johansen and Juselius (1990) multivariate
cointegration test. Results of the trace test are
depicted in Table 2. The test result provides
strong evidence that RM/YEN rate and relative
price are cointegrated at standard significance
levels, thereby verifying that RM/YEN rate
exhibits mean reverting behaviour to its long-
run PPP equilibrium. The results so far obtained

2 The estimation period ends in 1997: 2 and the forecasting horizon includes the 1997/98 Asian financial crises. The
volatility of the exchange rates during the currency turmoil allows us to evaluate the robustness of our forecasts

during the crisis and post-crisis periods.

134 Pertanika J. Soc. Sci. & Hum. Vol. 10 No. 2 2002



Performances of Non-linear Smooth Transition Autoregressive and Linear Autoregressive Models

TABLE 1
Unit root tests results

Tests Intercept Without Trend Intercept with Trend

X AX P AP X AX P AP
ADF  -0.362 -4.958* 1989 -5.537* -2.696 -4.953* -0.040 -6.260*
PP 0.528 -8.653* 3.726 -11.67* 2987 -8.653* 0.233 -12.86*

Notes: ADF and PP refer to Augmented Dickey-Fuller test and Phillip-Perron
test respectively. X and P denote exchange rate and relative price respectively.
Variable with A in front means its first difference. Test-statistics with asterisk (*)
imply reject null hypothesis of unitroot at 1% significance level.

TABLE 2
Johansen and Juselius cointegration test result

Likelihood Ratio of Eigen Value

Optimal Lag r=0 rsl
10 24.369* 5. 061
Critical Values

5% 19.90 9.24
1% 24.60 12.97

Notes:  r denotes the hypothesized number of cointegrating equation. Optimum
lag-length is determined by the Akaike Information Criterion (AIC). The single
asterisk (*) denotes rejection of hypothesis at 5% significance level.

are consistent with those reported in
Baharumshah and Ariff (1997) and M. Azali et
al. (2001).

This finding enables us to estimate the
equilibrium values of RM/YEN rate based on
the PPP hypothesis. Deviations of RM/YEN rate
from its equilibrium (y)can then be deduced by
subtracting its observed values from the estimated
equilibrium values. The nature of adjustment
process of these deviations towards the
equilibrium position is not known yet. To
determine the linearity (or non-linearity) of this
adjustment process, we employ the linearity tests
against the STAR models as described below.

LINEARITY TESTS

The minimum requirement for the estimation
of STAR models is to reject the linearity of the
variable under study (Tong and Lim 1980).
Various linearity tests have been developed based
on the idea of testing the null hypothesis that all
p* s in Equation 2 are simultaneously zero,
against the alternative hypothesis that at least
one f3* is not zero. Note that if the null hypothesis
cannot be rejected, Equation 2 would simply be

reduced to the linear AR (p) model. By the
same token, rejection of null hypothesis implies
the presence of non-linearity in favour of STAR
(p) model. As the properties of the transition
parameter (y°), the coefficients of non-linear
terms (B* s) and the mean value (u) of the
variable under estimation are not identified
under the null hypothesis, linearity is tested in
the context of auxiliary model instead of the
original STAR specification as in Equation 2.
Theoretical issues on linearity tests against STAR
models are found in Luukkonen et al. (1988),
Saikkonen and Luukkonen (1998), Terasvirta
and Anderson (1993), Terasvirta (1994) and
Eirtheim and Terasvirta (1996). Interested
readers may refer to these articles for more
detailed discussion on the tests.

This study only highlights a specification of
linearity test with alternative hypothesis in favour
of the ESTAR model, a variant of STAR model
relevant to this study. This specification as
proposed by Terasvirta (1994), is based on the
following auxiliary regression:
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Y, =0+ éa,- Yios * gécx;y,_m-j +

$$ei 0t 0, (6)

i=l j=1

The null hypothesis to be tested is that:
Hozajj=r;=0;i,j=1,...,p (@)

In practice, Terasvirta’s Lagrange Multiplier
(LM) linearity tests can be performed by
following these steps:

(1) Regress y, on {1, ybj;j= 1, ..., p}. Obtain the
estimated residuals ¢, and compute the residual

T .
sum of squares, SSR = 215, , where T is the
t=

sample size;
(2) Regress ¢, on {1, y,, YDy ytriyzh.}. Obtain the
estimated residuals @, and compute the residual

T -
sum of squares SSR = 210);2 ;
t=

(3) Compute the test statistic:

(SSR, - SSR)

LM = — where ¢ is the
13

estimated variance of &, (8)

Under the null hypothesis the LM statistic is
asymptotically distributed as a chi-squared (x?)
with 2p degrees of freedom, given that the delay
parameter d is known. For unknown d, the
degrees of freedom would be as large as
0.5p(p+1)+2p. This LM linearity test is actually
similar to that of Luukkonen, Saikkonen and
Terasvirta (LST) (1988), which is given as:

T(SSR, - SSR)
SSR,

LST = 9)

LST is also asymptotically distributed as a ?
with 0.5p(p+1)+p degrees of freedom. Luukkonen
et al. (1988) point out that if the delay parameter
d in Equation 2 is assumed known, the number
of degrees of freedom for LST statistic would
reduce largely to p+1 only. This shows that prior
knowledge about d is thus very useful in testing
linearity against ESTAR model.

Briefly, the optimum lag length pin the first
step of the above auxiliary regression procedure

is usually unknown even if the true model is
linear, and it has to be determined from the
data. Model selection criteria such as Final
Prediction Error (FPE), Schwarz Information
Criterion (SIC) and Akaike’s Information
Criterion (AIC) are normally used for this
purpose. However, these criteria are of course
not without any shortcomings (see for instance,
Liew and Shitan (2002) for a brief review of the
properties of these selection criteria). In general,
these information criteria tend to penalise high-
order lags.

On the other hand, if the selected p is too
low, the estimated AR (p) model may suffer
from autocorrelated residuals. Terasvirta and
Anderson (1993) pointed out that neglecting
the autocorrelation structure of the residuals
may lead to false rejection of the linearity
hypothesis in favour of the non-linearities
alternative, because often the test also has low
power against serially correlated errors. As such,
one may think that over-parameterisation of the
linear AR (p) is preferable to under-
parameterisation. However, selecting 2 maximum
lag-length greater than the true order p may also
weaken the power of the test compared to the
case where the maximum lag is known (Terasvirta
and Anderson 1993). Thus, it is important to
select order p sufficient enough to eliminate
autocorrelation.

In this study, the optimal lag length p of
linear AR (p) model is selected based on the
Akaike’s biased Corrected Information Criterion
(AICC). This criterion selects the minimum AICC
model, among a class of models with no serial
correlation. Liew and Shitan (2002) examine
the behaviour of AICC through a simulation
study and find that it has little tendency to
underestimate the true order p. Thus the use of
AICC avoids the problem of too parsimonious
model being selected. Based on AICC, the
optimal pis determined as 2 in the present case.

Having selected p, d needs to be determined.
In order to specify d, linearity test is carried out
for the range of values considered appropriate,
in this case, 1=d<b. If the linearity is rejected for
more than one value of d, then d is determined
such that Z(d)= sup Z(d) for 1=d<b where Z is
the selected test LM or LST. The argument
behind this rule of maximising the test statistic
is that the test has maximum power if d is
chosen correctly, whereas an incorrect choice of
d weakens the power of the test. Ljung-Box
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portmanteau Q test is also employed to confirm
the absence of serial correlation up to 20 lags.

Results of the linearity tests are summarised
in Table 3. It is clear from the table that linearity
is rejected at 1% significance level for the
deviations of RM/YEN rate from the equilibrium
value and hence in favour of the ESTAR model.
The optimal values of p and d are determined as
2 and 1 respectively. The Q statistic suggests that
the combination of p and d selected for the
model yields residuals that are free from
autocorrelation problem up to 20 lags. This
implies ESTAR (2) process with a delay
parameter, d =1 is the appropriate representation
of the adjustment of deviations towards the long-
run PPP equilibrium for the RM/YEN rate during
the sample period.

ESTIMATED MODELS

In this study, two versions of ESTAR model,
namely the unrestricted and restricted ESTAR
models are estimated for y, the deviations of
RM/YEN rate. The unrestricted ESTAR model,
is actually the model as specified in Equation 2
with a transition function given in Equation 3.
The word “unrestricted” is given to differentiate
it from a special case whereby certain restrictions

(ﬁﬂ; =1 B; = -B, and (Taylor and Peel 2000))
i=1

are imposed on it, thus resulting in a so-called
restricted ESTAR model. The results obtained
from these models are reported in Table 4.
Several features for the estimated
unrestricted model are noteworthy here: First,
the non-linear parameters (f| and y) of the
unrestricted ESTAR (2) model are statistically

TABLE 3
Linearity tests results

Test statistics

Sup Z (d)Delay parameter, d 1% Critical value

LM test 19.627
LST test 19.920
Ljung-Box Q statistic 15.912

1 2(4) = 18.28
1 $(3) = 11.34
. 22(20)=87.57

Notes: Null hypothesis, H: Linear model is correct. Rejection of H implies

nonlinearity in favour of ESTAR model.

TABLE 4
Estimated ESTAR (2) models

Estimated Values (Standard Errors)

Parameters Unrestricted model Restricted model

B, - 0.031(0.19) -0.025 (0.02)

B, 1.799 (0.33)** 1.442 (0.19)**

B, -0.340 (0.23) -0.253 (0.16)

g, -1.170 (0.40)%** -

g, 0.349 (0.50) -

Y 1.364 (0.25)** 0.357 (0.05)%**

o, 0.171 0.171
Diagnostic Tests (Marginal Significance Values)

(}ZSMR 0.002 0.002

& perin/ O 0.769 0.819

Q (20) 17.522 [0.619] 20.492 [0.428]

WHITE 5.276 [0.809] 8.270 [0.507]

ARCH (4) 1.563 [0.816] 1.595 [0.809]

GARCH (1, 1) 0.546 [0.761] 0.531 [0.767]

LR (3) - 8.952 [0.030]

Adjusted R? 0.882 0.878
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significant at 1% level. Second, the residual
variance ratio of this unrestricted ESTAR (2)
model to the linear AR (2) model is 0.769
indicating that the former has a much smaller
variance. This implies that the non-linear model
has the ability to produce smaller forecast errors
than the linear model. Third, the model passed
a battery of diagnostic tests at conventional
significance levels. Fourth, the adjusted R? value
(0.882), the explanatory power of this non-linear
model on the adjustment of deviations, is fairly
high. Fifth, the sum of linear parameters , and
B, equals 1.459 > 1, suggesting that y, exhibits
unit root behaviour and therefore linear AR (2)
itself is inadequate representation of y. On the

2 *
other hand, _21(13,- + ﬂi) = 0.638 <1 implies that

the requirement for global stability is met. This
confirms that y is mean-reverting in the non-
linear specification (Baum et al. 2001; Taylor
and Peel 2000). Lastly, our results seem to be
supportive of the following relationships: 8, =
-p, and f, = B,

The conclusion that can be drawn from the
first five findings is that the above non-linear
model is appropriate representation of y, the
deviations of RM/YEN rate; whereas the two last
results enable us to estimate the restricted ESTAR
model, with the following restrictions imposed
on the unrestricted model: B, + B, =1, B, = B,
and f, = -, (Taylor and Peel 2000). We utilised

the likelihood ratio (LR) test to determine the
validity of these restrictions. The computed LR
statistic is compared with chisquared critical
value with 3 degrees of freedom. The LR statistic
of 8.952 suggests that the above restrictions
cannot be rejected at the 5% significance level.
The adequacy of the model is verified by the
absence of serial correlation (Ljung-Box Q
statistic) and heteroscedasticity (WHITE statistic).
Moreover, neither ARCH (4) nor GARCH (1, 1)
suggests the presence of ARCH effect. Thus, the
restricted ESTAR (2) model passes a battery of
diagnostic tests and thereby can be used as a
forecasting model, as its unrestricted version.

The linear AR model is also estimated for
the purpose of forecast accuracy comparison.
The estimation of AR model requires that the
variables must be stationary; otherwise
interpretation from the outcome would be
spurious. We employed classical ADF and PP
stationarity tests to check whether the stationary
requirement is met. The stationarity tests results
are summarized in Table 5. The results in Table
5 postulate that instead of y, which is not
stationary, we should estimate linear AR model
for stationary series, Ay, the first difference of 9y
Strategically, we need to estimate AR (1) model
for Ay[, in order to obtain the required
benchmark model, namely AR (2) model for y,
The estimated AR (1) model is reported in
Table 6.

TABLE 5
Stationarity tests results

Tests Intercept Without Trend Intercept with Trend
Y, Ay, Y Ay,

ADF -0.858 4.081%* 0.034 4.081*

PP -1.244 -8.657* -0.493 -8.627*

Note. * denotes the variable is stationary at 1% significance level.

TABLE 6
Estimated AR (1) model

Series Coefficient of Diagnostic Tests (Marginal Significance Values)
Ay,, (t statistic)  R® Q (20) WHITE ARCH (4) GARCH
Ay, 0.024 (-0.96)  0.857 16.919 2.267 1.149 0.037
(0.657) (0.757) (0.362) (0.982)
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From Table 6, our AR (1) model for Ay, is given
by:

Ay, = - 0.024 Ay, (10)

Diagnostic tests results show that Equation
10 is free from all the autocorrelation,
heteroscedasticity and ARCH effects. The
adjusted R? values also suggest that the AR (1)
model fits fairly well for the Ay, series. To sum
up, the estimated AR (1) model is an appropriate
representation of first difference series of y. The
only shortcoming of this model is that the linear
autoregressive parameter is not significant based
on the standard t-test. Equation 10 can be
rewritten as:

y,= 0976y, + 0.024y, (11)
which is exactly the AR (2) specification of y,
the deviation of MYR/JPY rate from its PPP
equilibrium position. If we take into account the
insignificance of the autoregressive parameter,
Equation 10 would effectively be reduced to:

Equation 13 is simply the commonly used
benchmark for the evaluation of exchange rate
forecasting models, namely the simple random
walk (SRW) models. With the availability of two
benchmarks model, in particular the linear AR
(2) model (Equation 11) and SRW model
(Equation 13), this study proceeds to compare
the forecast accuracy of the unrestricted and
restricted ESTAR (2) models with the benchmark
(AR(2) and SRW) models.

FORECAST PERFORMANCE

The models are used to generate outsample
forecasts and the forecasting performances of
these models are evaluated. The outsample
performance of the estimated forecasting models
over the forecast horizon of n = 4, 8 and 12
quarters during the period 1997:3 to 2000:2 are
evaluated based on mean absolute forecast error
(MAFE), mean absolute percentage forecast error
(MAPFE) and root mean square forecast error
(RMSFE). The overall forecasting performances
are reported in Table 7. Generally, all accuracy
criteria consistently suggest that all three
forecasting models, namely the unrestricted

Ay, =0 (12)  ESTAR (2), restricted ESTAR (2) and AR (2)
models outperformed the SRW model at all
or its equivalent: horizons. This implies that both the linear and
non-linear time series models under this study
Y= Da (13) improve over the SRW model in the short- and
TABLE 7
Comparison of out-sample forecast accuracy
Models Unrestricted ESTAR (2) Restricted ESTAR (2) AR (2)
Forecast 4 8 12 4 8 12 4 8 12
Horizon
Simple Random Walk model as benchmark
MAFE 0.721 0.919 0.954 0.671 0.880 0.934 0.721 0.919 0.954
Ratio
MAFPE 0.587 0.838 0.890 0.668 0.876 0.923 0.712 0.901 0.935
Ratio
RMSPE 0.731 0.846 0.851 0.804 0.903 0.908 0.825 0.950 0.962
Ratio
Linear AR (2) model as benchmark
MAFE 0.590 0.844 0.903 0.931 0.958 0.979
Ratio
MAFPE 0.824 0.930 0.952 0.938 0.972 0.988
Ratio
RMSPE 0.886 0.891 0.885 0.975 0.950 0.944
Ratio
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medium-run.

It is interesting to know whether the non-
linear models yield more accurate forecasts than
the linear model. As a matter of fact, it is
rational for one to expect the former to improve
upon the latter, since the former is more
involved. In view of the fact that the actual
answer to this issue is important to the application
of time series analysis, this empirical study
proceeds further to contrast the forecast
performance between these two competing
models directly. The conclusion from this
exercise is that both the unrestricted and
restricted ESTAR (2) models predict better than
linear AR (2) model on the basis of all accuracy
criteria, for forecast horizon equals 4, 8 and 12
quarters. For instance, MAFE of unrestricted
(restricted) ESTAR (2) model are 0.590 (0.931),
0.844 (0.958) and 0.903 (0.979) times smaller
than the MAFE of AR (2) model, for n = 4, 8
and 12, in that order. These results are
overwhelmingly supported by the MAFPE and
RMSPE criteria. As such, our extra resource
spent on the modelling of ESTAR model is at
least paid off. Perhaps, more importantly, this
study has provided evidence that the
performance of ESTAR is superior to its linear
competitor, the AR model.

CONCLUSION

The empirical performance of foreign exchange
rate models has been frequently criticized in
recent years. These critiques come from studies
that have found exchange rate models predict
poorly out of sample periods. In the foreign
exchange market, central banks often intervene,
in an effort either to attenuate or to amplify
variations in the exchange rate. The Ringgit is
no exception and this explained partly the poor-
out-of sample prediction of the exchange rate
models in previous studies.

In this study, we demonstrate that the
adjustment of the RM/YEN rate is in fact
predictable based on time series model. The
STAR model and AR model both outperform
the random walk in the out sample forecasting
at all horizons. The results also show that the
STAR model outperforms the AR model, its
linear competitor. Importantly, we demonstrate
formally that the adjustment of the Ringgit to its
long run equilibrium follows a non-linearity path.
This suggests that there is a systematic predictable
component in the movement of nominal RM/

YEN exchange rate.

Two major implications of this finding are:
(1) non-linear ESTAR model should be given
priority in modelling exchange rate time series;
and (2) exchange rate forecasters could rely on
the non-linear model as a more reliable
forecasting tool.
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