PARALLEL IMPLEMENTATION OF TWO LEVEL BAROTROPIC MODELS APPLIED TO THE WEATHER PREDICTION PROBLEM

By

SUSILA BAHRI

Thesis Submitted to the School of Graduates Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2004

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

PARALLEL IMPLEMENTATION OF TWO LEVEL BAROTROPIC MODELS APPLIED TO WEATHER PREDICTION PROBLEM

By

SUSILA BAHRI

May 2004

Chairman : Associate Professor Fudziah Ismail, Ph.D.

Faculty : Science

Forecasting model for short range weather prediction that is used here is the two level Barotropic models. This model is used because it can give approximation of air conditions covering higher isobar levels. By using finite difference approximation, quasigeostrophic vorticity equations and thermodynamic equations are used to develop forecasting equations for each level. The forecasting equation for determining the geopotential heights can be solved by using suitable lateral conditions. In relation to the conformal map, the quasigeostrophic equations are modified by using a formula. These equations are then transformed into finite difference equation. This can be achieved by using grids chosen from the mesh scale. Then, the system of equations is solved using Gauss Seidel method.

To process the data collected from British Atmospheric Data Centre (BADC), the sequential programs in row and columnwise fashions are developed and implemented. Then the parallel algorithms are constructed and run using the Beowulf Cluster machine. The numerical results based on the sequential and parallel algorithms for both row and columnwise fashions are presented and compared to determine their performance.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGIMPLEMENTASIAN SELARI MODEL BAROTROFIK DUA ARAS KEATAS MASALAH RAMALAN CUACA

Oleh

SUSILA BAHRI

Mei 2004

Pengerusi : Profesor Madya Fudziah Ismail, Ph.D.

Fakulti : Sains

Model ramalan cuaca jangka pendek yang digunakan adalah model barotrofik dua aras. Model ini digunakan kerana ianya dapat memberikan penghampiran bagi keadaan udara pada beberapa aras isobar yang lebih tinggi. Dengan menggunakan penghampiran beza terhingga, persamaan kuasigeostrofik dan persamaan termodinamik yang membentuk persamaan ramalan bagi setiap aras tersebut, dapat ditentukan. Persamaan ramalan bagi mendapatkan ketinggian geopotensial, boleh diselesaikan dengan menggunakan syarat sempadan yang sesuai. Dalam hubungan dengan peta konformal, persamaan kuasigeostrofik dijelmakan dengan menggunakan rumus, seterusnya ia dijelmakan menjadi persamaan beza terhingga. Ini diperolehi dengan menggunakan grid yang dipilih menggunakan suatu skala mesh. Kemudian sistem persamaan tersebut diselesaikan menggunakan kaedah Gauss Seidel.

Bagi memproses data yang diperolehi dari British Atmospheric Data Center, pengaturcaraan jujukan dalam baris dan lajur dibentuk dan dilaksanakan. Kemudian algoritma selarinya dibina dan dilarikan menggunakan mesin Cluster Beowulf. Keputusan berangka berdasarkan algoritma jujukan dan selari bagi perlaksanaan iaitu kedua-dua bentuk baris dan lajur dipersembahkan dan dibandingkan untuk menentukan prestasinya.

ACKNOWLEDGEMENTS

In the Name of ALLAH

The Most Beneficent, The Merciful

This thesis wouldn't have been possible without the help and support of many people. My sincere and deepest gratitude goes to Associate Professor Dr Fudziah Ismail, the Chairman of the Supervisory Committee, for her outstanding supervision and continuous support.

Special thanks also to the members of the Supervisory Committee, Dr. Rozita Johari and Prof. Dr. Bachok B Taib, for their assistance and encouragement. I would also like to thank Associate Professor Dr. Md. Yazid bin Mohd Saman for his help.

I am indebted to the Government of Malaysia, particularly Universiti Putra Malaysia, for granting the scholarship to pursue my studies. My gratitude is also extended to my parents, Dr. Hj. Syamsul Bahri, S.H and H. Salbiah and my brothers Hj. Satria Bahri and Sempurna Bahri, SE.Akt for being so supportive.

Last but not least, my sincere and special thanks go to my husband Erison, S.H, M.S and my children Addiena Syamila, Muhammad Hadana Alkautsar for their understanding, caring, patience and continuous love. I certify that an Examination Committee met 7th May 2004 to conduct the final examination of Susila Bahri on her Doctor of Philoshopy thesis entitled "Parallel Implementation of Two Level Barotropic Models Applied to The Weather Prediction Problem" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Azmi Jaafar, Ph.D.

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Harun Budin, Ph.D.

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Mohd Rizam Abu Bakar, Ph.D.

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Bahrom Sanugi, Ph.D.

Professor Universiti Teknologi Malaysia (Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 29 November 2004

This thesis submitted to the Senate of Universiti Puta Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Fudziah Ismail, Ph.D.

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Rozita Johari, Ph.D.

Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Member)

Bachok B Taib, Ph.D. Professor Faculty of Science and Te

Faculty of Science and Technology Universiti Pendidikan Sultan Idris (Member)

AINI IDERIS, Ph.D.

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SUSILA BAHRI

Date: 29 October 2004

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF SYMBOLS	xvii
LIST OF ALGORITHMS	xxi

CHAPTER

1	INTR	ODUCTION	1
	1.1. 1.2. 1.3. 1.4. 1.5. 1.6.	Background Survey on Weather Prediction Two Level Barotropic Models Statement of The Problem Objective of The Research Structure of The Thesis	1 2 3 3 4 4
2	THE	GOVERNING EQUATIONS	6
	2.1.	The Newtonian Equations of Motion2.1.1. The Equation of Absolute Motion2.1.2. The Acceleration of Absolute and Relative Motion2.1.3. The Equation of Relative Motion	6 7 8 10
	2.2. 2.3.	The Component Equations Order of Magnitude and Types of Motion	11 13
	2.4. 2.5. 2.6.	Motion in Relation to Pressure Surfaces Flow and Circulation Acceleration of the Circulation	16 17 19
	2.7. 2.8. 2.9.	Circulation and Vorticity Absolute and Relative Vorticity Circulation and Vorticity Theorems	20 22 23
	2.10. 2.11. 2.12	Adiabatic and Isobaric Motion The Equation of Continuity with Pressure as Vertical Coordinate The Vorticity Theorem for Isobaric Surfaces	27 29 30
	2.12. 2.13. 2.14.	The Geostrophic Vorticity The Quasi Geostrophic Equations	31 33

3	WEA	ATHER PREDICTION MODEL AND PARALLEL SYSTEMS	36
	3.1.	Numerical Prediction Model	36
		3.1.1. The Barotropic Models	36
		3.1.2. Two Level Barotropic Models	38
		3.1.3. Use of Conformal Map	40
		3.1.4. Computation Procedure	43
	2 2	3.1.5. Gauss Seidel Method	46
	3.2.	Parallel Systems	48
		3.2.1. Taxonomy of Faraner Architectures	40 50
		3.2.3 Parallel Algorithm	52
		(i) Design of Parallel Algorithm	52
		(ii) Performance Metrics for Parallel Systems	52
		3.2.4. Programming on Beowulf Cluster Machine	55
		(i) Message Passing Interface (MPI)	56
		(ii) MPICH	56
		(iii) MPI Routines	57
		(iv) Data Partitioning or Domain Decomposition	59
		3.2.5. Red-Black Ordering Method	60
-	BAR	OTROPIC MODELS	63
	4.1. 1 2	Infoduction Implementation of Sequential Algorithms	05 64
	7.2.	4.2.1 Sequential Algorithm by Row Wise Fashion	65
		(i) Read data Procedure	65
		(ii) Jacobian Procedure	66
		(iii) Matrix Procedure	71
		(iv) Gauss_Seidel Procedure	72
		4.2.2. Sequential Algorithm by Column Wise Fashion	75
		(i) Read_data Procedure	75
		(11) Jacobian Procedure	76
		(iii) Matrix Procedure	70
		(1v) Gauss_Selder Plocedure	/9 80
		4.2.5. Results and Analysis	80
5	PAR	ALLEL IMPLEMENTATION OF TWO LEVEL 82	
	DAN	UTROFIC MODELS IN ROW WISE FASHION	
	5.1.	Introduction	82
	5.2.	Implementation of Parallel Algorithm	82
		5.2.1. Read_data_parrow Procedure	83
		5.2.2. Jacobian_parrow Procedure	85
		5.2.5. Matrix_parrow Procedure	97
		5.2.4. Gauss_Seidel_parrow Procedure	99

	5.2.5. Results and Analysis	110
6 PAR BAR	ALLEL IMPLEMENTATION OF TWO LEVEL OTROPIC MODELS IN COLUMN WISE FASHION	115
6.1.	Introduction	115
6.2.	Implementation of Parallel Algorithm	115
	6.2.1. Read_data_parcol Procedure	115
	6.2.2. Jacobian_parcol Procedure	116
	6.2.3. Matrix parcol Procedure	125
	6.2.4. Gauss Seidel parcol Procedure	127
	6.2.5. Results and Analysis	136
7. DISC	CUSSION AND CONCLUSION	141
7.1	Discussion	141
7.2	Conclusion	142
7.3	Future Research	143
7.3 REFER	Future Research	143 145
7.3 REFER APEND	Future Research ENCES ICES A: The Results of Vorticities and Jacobian Determinants	143 145 148
7.3 REFER APEND APEND	Future Research ENCES ICES A: The Results of Vorticities and Jacobian Determinants ICES B: The Results of The Last Iteration	143 145 148 156