

UNIVERSITI PUTRA MALAYSIA

CARBON STOCK AND GROWTH PERFORMANCE OF DIFFERENT KENAF (Hibiscus cannabinus L.) VARIETIES IN BRIS SOIL OF DIFFERENT ORGANIC CARBON LEVELS

MD. DELWAR HOSSAIN

ITA 2012 7

CARBON STOCK AND GROWTH PERFORMANCE OF DIFFERENT KENAF (*Hibiscus cannabinus* L.) VARIETIES IN BRIS SOIL OF DIFFERENT ORGANIC CARBON LEVELS

By

MD. DELWAR HOSSAIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

June 2012

DEDICATION

This thesis is dedicated to my parents, brothers, sisters, wife, and daughter, who made a lot of sacrifice for me. Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for Doctor of Philosophy

CARBON STOCK AND GROWTH PERFORMANCE OF DIFFERENT KENAF (Hibiscus cannabinus L.) VARIETIES IN BRIS SOIL OF DIFFERENT **ORGANIC CARBON LEVELS**

By

MD. DELWAR HOSSAIN

June 2012

: Professor Mohamed Hanafi Musa, PhD Chairman : Tropical Agriculture

Institute

High interest in growing kenaf throughout the world is due to its high biomass yield, elevated fiber contents, and as good carbon (C) sequesters plant. Soil fertility management is a pre-requisite for successfully growing kenaf in marginal soil. Hence, the overall objectives were (i) to determine the optimum levels of N, P, and K for optimum growth of kenaf, (ii) to evaluate the effects of different C levels and sources on the growth, biomass production, physiological traits, fiber yield, fiber morphological traits and C stock by the kenaf plants and soil, (iii) to study the root characteristics of kenaf varieties and to relate the shoot growth to root traits of different varieties, and (iv) to determine the effects of C levels on kenaf under field conditions. The optimum levels of major nutrients, N, P, and K, were obtained by growing V36 kenaf variety in polypropylene trays containing aerated Hoagland's nutrient solution using five different concentrations. Plants grown under N, P, and K deprivation showed significantly lower growth, biomass production, chlorophyll content, photosynthesis and stomatal conductance. The highest values for these parameters were obtained from 200 N, 100 P, and 100 K (in mg L⁻¹) and then declined. The effects of different C levels and sources on the growth, biomass production, physiological traits, fiber yield, fiber morphological traits and C stock by the kenaf plants and soil were evaluated in the glasshouse. The maximum values of these parameters were achieved at 20 t ha⁻¹ C level. The variety HC2 accumulated the highest dry matter followed by V36. Most of the dry matter accumulation occurred in stems (63.98%). Of the five varieties, the average dry matter in stems was 76.83% and in leaves was 20.56%. The macro- and micro-nutrients proportion varied markedly in plant components and varieties. The kenaf varieties exhibited significant variation in fiber length, width, lumen width, and cell wall thickness. The maximum C stock was observed for variety HC2 and at 20 t ha⁻¹ C level. The root growth, total root length, number of root tips, root surface area and root volume showed significant differences in their responses to C levels in pot experiment. The varieties, producing higher shoot growth, were associated with the higher values of root traits. The effects of C levels on kenaf were investigated under natural field condition for two seasons. Kenaf plants cannot generate vigorous plants growth under zero C level. The differences in plant growth, physiological parameters, proportions of macro- and micronutrients and total nutrients accumulated in the plant components, yield, fiber morphological dimensions and C stock suggested that the variety HC2 as well as V36 could be considered as the appropriate varieties to be grown on BRIS soil under effective management of organic

iv

C.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk mendapat Ijazah Doktor Falsafah

STOK KARBON DAN PRESTASI PERTUMBUHAN VARIETI KENAF (Hibiscus cannabinus L.) YANG BERBEZA DI TANAH BRIS YANG DENGAN TAHAP KARBON ORGANIK YANG BERBEZA

Oleh

MD. DELWAR HOSSAIN

Jun 2012

Pengerusi	: Profesor Mohamed Hanafi Musa, PhD
U	

Institut

: Pertanian Tropika

Kepentingan yang tinggi dalam penaraman kenaf di seluruh dunia adalah disebabkan hasil bimass yang tinggi, serat kandungan fiber yang tinggi, dan sebagai tumbuhan yang berkesan bagi pengasingkan karbon (C). Pengurusan kesuburan tanah adalah satu pra-syarat bagi pertumbuhan kenaf di tanah marginal. Maka, keseluruhan objektif adalah (i) Bagi menentukan tahap optimum nutrient utama, N, P, dan K untuk pertumbuhan kenaf optimum, (ii) untuk menilai kesan-kesan perbezaan tahap karbon dan sumber-sumber untuk pertumbuhan, pengeluaran biojisim, cirri-ciri fisiologi, hasil fiber, cirri-ciri morfologi fiber dan pemencilan karbon oleh tanaman kenaf dan tanah, (iii) untuk mengkaji ciri-ciri akar varieti kenaf dan berkait dengan pertumbuhan pucuk kepada cirri-ciri akar berlainan variety (iv) bagi menentukan kesan tahap C ke atas kenaf dalam experimen lapangan. Tahap optimum nutrient utama, N, P, dan K, diperoleh melalui pertumbuhan varieti kenaf V36 ditanam di dulang polipropylene yang mengandungi larutan nutrient berudara Hoagland menggunakan lima kepekatan yang berbeza. Tumbuhan yang ditanam dalam keadaan kekurangan N, P, dan K

menunjukan pertumbuhan lebih rendah, pengeluaran biojisim, kandungan klorofil, fotosintesis dan kealiran stomatal. Nilai tertinggi bagi parameter-parameter ini diperolehi dari 200 N, 100 P, dan 100 K (dalam mg L⁻¹) dan kemudian menurun. Kesan-kesan perbezaan tahap karbon dan sumber-sumber untuk pertumbuhan, pengeluaran biojisim, ciri-ciri fisiologi, hasil fiber, cirri-ciri morfologi fiber dan stok karbon oleh tanaman kenaf dan tanah dinilai di dalam rumah kaca. Nilai maksimum parameter-parameter ini telah dicapai pada tahap 20 t ha⁻¹ C. Varieti HC2 mengumpulkan bahan kering tertinggi dan diikuti V36. Kebanyakan pengumpulan bahan kering berlaku dalam stem (63.98%). Antara lima varieti, purata bahan kering dalam stem ialah 76.83% dan dalam daun ialah 20.56%. Bahagian makro dan mikronutrien berubah ketara dalam komponen dan varieti. Pengasingan maksimum C diperhatikan untuk varieti HC2 dan pada tahap 20 t ha⁻¹ C. Pertumbuhan akar, jumlah panjang akar, bilangan tips akar, permukaan akar, dan isipadu akar menunjukan perbezaan ketera dalam tindak balas terhadap tahap C pada ekspeimen pasu. Varieti menghasilkan pertumbuhan pucuk lebih tinggi yang kerkatan dengan nilai ciri-ciri akar lebih tinggi, kesan tahap C pada kenaf dikaji dalam situasi semulajadi bagi dua musim. Keputusan menunjukan kenaf tidak boleh menjana pertumbuhan tumbuhan bawah tahap C sifar. Perbezaan dalam pertumbuhan kenaf, ciri-ciri fisiologi, bahagian makro dan mikro nutrient dalam komponen tanaman kenaf, hasil fiber, ciri-ciri morfologi fiber dan stok karbon dalam keadaan kajian ruma kaca dan lapangan mencadangkan bahawa variti HC2 dan V36 boleh dianggap sebegai variety yang paling sesuai untuk ditanam di tanah BRIS di bawah pengurusan C organic yang berkesan.

ACKNOWLEDGEMENTS

All praise is to Almighty Allah for His endless blessings, kindness, guidance, strength, and will to successfully complete my PhD study.

I would like to express my heartfelt gratitude, indebtedness, and deep sense of respect to Professor Mohamed Hanafi Musa, the chairman of the supervisory committee for his sincere support, guidance, constant encouragement, invaluable suggestions and generous help throughout the study period. Special appreciation and gratitude are extended to Associate Professor Dr Hamdan Jol and Associate Professor Dr Hazandy Abdul Hamid, members of the supervisory committee for their encouragement, constructive advice and guidance in execution of the research and critical review of the manuscript.

I would like to thank Ministry of Higher Education (MOHE) for providing the topdown research grant (No. 5523502) and Universiti Putra Malaysia for providing Graduate Research Assistance Scholarship to study in Malaysia. I also express my profound appreciation to the National Kenaf and Tobacco Board, Besut, Terengganu, Malaysia and Malaysian Meteorological Department for allocation of their land to conduct experiments and supply of weather data. Furthermore, I am grateful to the Bangladesh Agricultural University (BAU) for providing deputation and all kinds of assistance to accomplish my degree. I feel proud to express my sincere appreciation and indebtedness to Mr. Zainuddin Mohd. Ali, Mr. Alias Tahar, Mr. Mayudin Othman, Mr. Baharum Zainal, Mrs. Norhasimah Sulaiman, Mr. Tengoua Fabien, and Mr. Shamsuddeen for their cooperation, help and assistance in glasshouse and field experiments. Sincere thanks and appreciation are extended to Associate Professor Dr. Md. Parvez Anwar, Department of Agronomy, BAU for his constructive suggestion in my work. Special thanks to Hafizul Hazman bin Ngaa and Mohd. Fabian bin Hasna for their contribution to the Bahasa Melayu abstract of this thesis.

I respectfully acknowledge the blessings and good wishes of my parents, teachers, brothers, sisters and relatives. Special gratitude must go to my wife and daughter for their great sacrifice, patience and support during the study period. I certify that a Thesis Examination Committee has met on 12 June 2012 to conduct the final examination of Md. Delwar Hossain on his Doctor of Philosophy thesis entitled "Carbon Stock and Growth Performance of Different Kenaf (*Hibiscus cannabinus* L.) Varieties on BRIS Soil as Influenced by Different Organic Carbon Levels" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Siti Nor Akmar Abdullah, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Chairperson)

Mohd Ridzwan Abd Halim, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Ahmed Ainuddin Nuruddin, PhD

Associate Professor Institute of Tropical Forestry and Forest Products Universiti Putra Malaysia (Internal Examiner)

Maryke Labuschagne, PhD

Professor Department of Plant Sciences University of the Free State South Africa (External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohamed Hanafi Musa, PhD

Professor Institute of Tropical Agriculture Universiti Putra Malaysia (Chairman)

Hamdan Jol, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Hazandy Abdul Hamid, PhD

Associate Professor Faculty of Forestry Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MD. DELWAR HOSSAIN

Date: 12 June 2012

TABLE OF CONTENTS

AB AC AP DE LI LI LI LI LI	STRA STRA PROV PROV CLAR ST OF ST OF ST OF ST OF ST OF	CT K WLEDGEMENTS AL ATION TABLES FIGURES PLATES APPENDICES ABBREVIATIONS	Page iii v vii ix xi xv xvii xxvii xxiii xxiv xxv
CH	IAPTE	R	
1	INTR	CODUCTION	1
	1.1	Outline of the thesis	4
2	LITE	RATURE REVIEW	5
-	2.1	Fiber crops	5
	2.2	Kenaf	6
	2.3	Studies on kenaf and its components	7
	2.4	BRIS soil and its distribution	8
	2.5	Development of BRIS soil	9
	2.6	Chlorophyll, photosynthesis and stomatal conductance	11
	2.7	Carbon stock and carbon sequestration	11
	2.8	Soil C stock	13
	2.9	Nutrients and growth of kenaf	14
		2.9.1 Nitrogen	14
		2.9.2 Phosphorus	15
	• • •	2.9.3 Potassium	16
	2.10	Studies on kenaf related to sandy BRIS soil	17
	2.11	Kenaf experiences using inorganic and organic fertilizers	18
	2.12	Kenaf root characteristics	20
	2.13	Growth biomass production and allocation in kenaf	20
	2.14	Fiber morphology and yield	22
	2.15	Summary	23
3	GENI	ERAL MATERIALS AND METHODS	24
	3.1	Soil sampling, preparation and analysis	24
	3.2	Organic fertilizer samples and analysis	25
	3.3	Plant sampling, preparation and analysis	26
	3.4	Growth and biomass measurements	27
	3.5	Physiological measurements	28
	3.6	Statistical analysis	28

4	EFFE	CTS OF NITRO	GEN, PHOSPHORUS AND POTASSIUM ON THE	29
	PERF	ORMANCE O	F KENAF UNDER NUTRIENT SOLUTION	
	CULI	TURE		•
	4.1	Introduction		29
	4.2	Materials and Me	ethods	31
		4.2.1 Location	and plant material	31
		4.2.2 Growing	, of seedlings	31
		4.2.3 Growth	solution and treatments	32
		4.2.4 Experim	ental design	32
		4.2.5 Data ana	llysis	33
	4.3	Results and Disc	ussion	33
		4.3.1 Growth	parameters	33
		4.3.1.1	Effect of nitrogen nutrition levels on kenaf plant	33
			growth and dry weights of different plant parts	
		4.3.1.2	Effect of phosphorus nutrition levels on kenaf plant	38
			growth and dry weights of different plant parts	
		4.3.1.3	Effect of potassium nutrition levels on kenaf plant	41
			growth and dry weights of different plant parts	
		4.3.2 Physiolo	gical parameters	44
		4.3.2.1	Effects of levels of nitrogen, phosphorus and	44
			potassium on chlorophyll content in leaf of kenaf plant	
		4.3.2.2	Relationship between chlorophyll content and days	45
			after treatment at 0 level of nitrogen, phosphorus and	
			potassium	
		4.3.2.3	Relationship between leaf photosynthesis rate and	47
			levels of nitrogen, phosphorus and potassium	
		4.3.2.4	Effects of levels of nitrogen, phosphorus and	49
			potassium on stomatal conductance of kenaf plant	
	4.4	Conclusions		50
5.	PERF	ORMANCE OF	KENAF VARIETIES GROWN ON SANDY BRIS	51
	SOIL	AS INFLUENC	ED BY DIFFERENT LEVELS AND SOURCES OF	
	CARI	BON		
	5.1	Introduction		51
	5.2	Materials and Me	ethods	53
		5.2.1 Experim	ental site and plant materials	53
		5.2.2 Growth	conditions, treatments and experimental design	53
		5.2.3 Fiber yie	eld determination	54
		5.2.4 Fiber mo	orphology determination	55
		5.2.5 Determin	nation of C stock by kenaf plant	56
		5.2.6 Compute	ation of C change in soil	57
		5.2.7 Data ana	lysis	57
	5.3	Results and Disc	ussion	58
		5.3.1 Growth	parameters	58
		5.3.1.1	Effect of C levels and variety on stem diameter, plant	58
			height, leaf number and leaf area of kenaf	
		5.3.1.2	Effect of C levels and variety on dry weight of root,	66
			stem and leaf, and total dry weight of kenaf	
		5.3.1.3	Partitioning of kenaf dry matter	73

		5.3.2	Physiological parameters	80
		5.3.3	Nutritional parameters	85
		5.3.4	Fiber yield	90
		5.3.5	Fiber morphology	93
		5.3.6	Carbon stock	106
	5.4	Conclu	sions	108
6	EFFE	CT O	OF CARBON LEVELS ON SHOOT AND ROOT	111
	CHA	RACTE	RISTICS OF DIFFERENT KENAF VARIETIES	
	6.1	Introdu	iction	111
	6.2	Materia	als and Methods	113
		6.2.1	Description of site and plant materials	113
		6.2.2	Growing of plants, treatments and experimental design	113
		6.2.3	Root parameters	114
		6.2.4	Statistical analysis	115
	6.3	Results	and Discussion	115
		6.3.1	Shoot growth response to C levels	115
		6.3.2	Dry weight of shoots and roots	118
		6.3.3	Total root length and root tips	122
		6.3.4	Root surface area and root volume	126
	6.4	Conclu	sions	130
7	KENA	AF RES	PONSES TO DIFFERENT CARBON LEVELS ON SANDY	131
	BRIS	SOIL U	NDER FIELD CONDITION	
	7.1	Introdu	lection	131
	7.2	Materia	als and Methods	133
		7.2.1	Description of experimental site	133
		7.2.2	Treatments, plant materials, experimental design and cultivation	133
		7.2.3	Measurements and calculations	135
		7.2.4	Statistical analysis	135
	7.3	Results	and Discussion	136
		7.3.1	Variation in growth	136
		7.3.2	Effects of C levels on dry matter production and its allocation	149
		7.3.3	Effects of C levels on physiological parameters	154
		7.3.4	Effects of C levels on fiber yield of kenaf	160
		7.3.5	Carbon stock	166
	7.4	Conclu	sions	169
8	SUM	MARY,	CONCLUSIONS AND RECOMMENDATIONS FOR	170
		JKE KE		170
	ð.1	Summa	ary aiona	1/0
	ð.2	Conclu	ISIOIIS	1//
	0.3 ACCOMMENDATION TO TUTULE RESEARCH 1/			1/8

REFERENCES	179
APPENDICES	198
BIODATA OF STUDENT	207
LIST OF PUBLICATIONS	208

C