CARBON STOCK AND GROWTH PERFORMANCE OF DIFFERENT KENAF (Hibiscus cannabinus L.) VARIETIES IN BRIS SOIL OF DIFFERENT ORGANIC CARBON LEVELS

MD. DELWAR HOSSAIN

ITA 2012 7
CARBON STOCK AND GROWTH PERFORMANCE OF DIFFERENT KENAF (Hibiscus cannabinus L.) VARIETIES IN BRIS SOIL OF DIFFERENT ORGANIC CARBON LEVELS

By

MD. DELWAR HOSSAIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

June 2012
DEDICATION

This thesis is dedicated to my parents, brothers, sisters, wife, and daughter, who made a lot of sacrifice for me.
Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for Doctor of Philosophy

CARBON STOCK AND GROWTH PERFORMANCE OF DIFFERENT KENAF (Hibiscus cannabinus L.) VARIETIES IN BRIS SOIL OF DIFFERENT ORGANIC CARBON LEVELS

By

MD. DELWAR HOSSAIN

June 2012

Chairman : Professor Mohamed Hanafi Musa, PhD
Institute : Tropical Agriculture

High interest in growing kenaf throughout the world is due to its high biomass yield, elevated fiber contents, and as good carbon (C) sequesters plant. Soil fertility management is a pre-requisite for successfully growing kenaf in marginal soil. Hence, the overall objectives were (i) to determine the optimum levels of N, P, and K for optimum growth of kenaf, (ii) to evaluate the effects of different C levels and sources on the growth, biomass production, physiological traits, fiber yield, fiber morphological traits and C stock by the kenaf plants and soil, (iii) to study the root characteristics of kenaf varieties and to relate the shoot growth to root traits of different varieties, and (iv) to determine the effects of C levels on kenaf under field conditions. The optimum levels of major nutrients, N, P, and K, were obtained by growing V36 kenaf variety in polypropylene trays containing aerated Hoagland’s nutrient solution using five different concentrations. Plants grown under N, P, and K deprivation showed significantly lower growth, biomass production, chlorophyll...
content, photosynthesis and stomatal conductance. The highest values for these parameters were obtained from 200 N, 100 P, and 100 K (in mg L\(^{-1}\)) and then declined. The effects of different C levels and sources on the growth, biomass production, physiological traits, fiber yield, fiber morphological traits and C stock by the kenaf plants and soil were evaluated in the glasshouse. The maximum values of these parameters were achieved at 20 t ha\(^{-1}\) C level. The variety HC2 accumulated the highest dry matter followed by V36. Most of the dry matter accumulation occurred in stems (63.98%). Of the five varieties, the average dry matter in stems was 76.83% and in leaves was 20.56%. The macro- and micro-nutrients proportion varied markedly in plant components and varieties. The kenaf varieties exhibited significant variation in fiber length, width, lumen width, and cell wall thickness. The maximum C stock was observed for variety HC2 and at 20 t ha\(^{-1}\) C level. The root growth, total root length, number of root tips, root surface area and root volume showed significant differences in their responses to C levels in pot experiment. The varieties, producing higher shoot growth, were associated with the higher values of root traits. The effects of C levels on kenaf were investigated under natural field condition for two seasons. Kenaf plants cannot generate vigorous plants growth under zero C level. The differences in plant growth, physiological parameters, proportions of macro- and micronutrients and total nutrients accumulated in the plant components, yield, fiber morphological dimensions and C stock suggested that the variety HC2 as well as V36 could be considered as the appropriate varieties to be grown on BRIS soil under effective management of organic C.
menunjukan pertumbuhan lebih rendah, pengeluaran biojisim, kandungan klorofil, fotosintesis dan kealiran stomatal. Nilai tertinggi bagi parameter-parameter ini diperolehi dari 200 N, 100 P, dan 100 K (dalam mg L\(^{-1}\)) dan kemudian menurun. Kesan-kesan perbezaan tahap karbon dan sumber-sumber untuk pertumbuhan, pengeluaran biojisim, ciri-ciri fisiologi, hasil fiber, cirri-ciri morfologi fiber dan stok karbon oleh tanaman kenaf dan tanah dinilai di dalam rumah kaca. Nilai maksimum parameter-parameter ini telah dicapai pada tahap 20 t ha\(^{-1}\) C. Varieti HC2 mengumpulkan bahan kering tertinggi dan diikuti V36. Kesamaan pengumpulan bahan kering berlaku dalam stem (63.98%). Antara lima varieti, purata bahan kering dalam stem ialah 76.83% dan dalam daun ialah 20.56%. Bahagian makro dan mikro-nutrien berubah ketara dalam komponen dan varieti. Pengasingan maksimum C diperhatikan untuk varieti HC2 dan pada tahap 20 t ha\(^{-1}\) C. Pertumbuhan akar, jumlah panjang akar, bilangan tips akar, permukaan akar, dan isipadu akar menunjukan perbezaan ketera dalam tindak balas terhadap tahap C pada ekspeimen pasu. Varieti menghasilkan pertumbuhan pucuk lebih tinggi yang kerkatan dengan nilai ciri-ciri akar lebih tinggi. kesan tahap C pada kenaf dikaji dalam situasi semulajadi bagi dua musim. Keputusan menunjukan kenaf tidak boleh menjana pertumbuhan tumbuhan bawah tahap C sifar. Perbezaan dalam pertumbuhan kenaf, ciri-ciri fisiologi, bahagian makro dan mikro nutrient dalam komponen tanaman kenaf, hasil fiber, ciri-ciri morfologi fiber dan stok karbon dalam keadaan kajian rumah kaca dan lapangan mencadangkan bahawa variti HC2 dan V36 boleh dianggap sebegai variety yang paling sesuai untuk ditanam di tanah BRIS di bawah pengurusan C organic yang berkesan.

vi
ACKNOWLEDGEMENTS

All praise is to Almighty Allah for His endless blessings, kindness, guidance, strength, and will to successfully complete my PhD study.

I would like to express my heartfelt gratitude, indebtedness, and deep sense of respect to Professor Mohamed Hanafi Musa, the chairman of the supervisory committee for his sincere support, guidance, constant encouragement, invaluable suggestions and generous help throughout the study period. Special appreciation and gratitude are extended to Associate Professor Dr Hamdan Jol and Associate Professor Dr Hazandy Abdul Hamid, members of the supervisory committee for their encouragement, constructive advice and guidance in execution of the research and critical review of the manuscript.

I would like to thank Ministry of Higher Education (MOHE) for providing the top-down research grant (No. 5523502) and Universiti Putra Malaysia for providing Graduate Research Assistance Scholarship to study in Malaysia. I also express my profound appreciation to the National Kenaf and Tobacco Board, Besut, Terengganu, Malaysia and Malaysian Meteorological Department for allocation of their land to conduct experiments and supply of weather data. Furthermore, I am grateful to the Bangladesh Agricultural University (BAU) for providing deputation and all kinds of assistance to accomplish my degree.
I feel proud to express my sincere appreciation and indebtedness to Mr. Zainuddin Mohd. Ali, Mr. Alias Tahar, Mr. Mayudin Othman, Mr. Baharum Zainal, Mrs. Norhasimah Sulaiman, Mr. Tengoua Fabien, and Mr. Shamsuddeen for their cooperation, help and assistance in glasshouse and field experiments. Sincere thanks and appreciation are extended to Associate Professor Dr. Md. Parvez Anwar, Department of Agronomy, BAU for his constructive suggestion in my work. Special thanks to Hafizul Hazman bin Ngaa and Mohd. Fabian bin Hasna for their contribution to the Bahasa Melayu abstract of this thesis.

I respectfully acknowledge the blessings and good wishes of my parents, teachers, brothers, sisters and relatives. Special gratitude must go to my wife and daughter for their great sacrifice, patience and support during the study period.
I certify that a Thesis Examination Committee has met on 12 June 2012 to conduct the final examination of Md. Delwar Hossain on his Doctor of Philosophy thesis entitled “Carbon Stock and Growth Performance of Different Kenaf (Hibiscus cannabinus L.) Varieties on BRIS Soil as Influenced by Different Organic Carbon Levels” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Siti Nor Akmar Abdullah, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairperson)

Mohd Ridzwan Abd Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Ahmed Ainuddin Nuruddin, PhD
Associate Professor
Institute of Tropical Forestry and Forest Products
Universiti Putra Malaysia
(Internal Examiner)

Maryke Labuschagne, PhD
Professor
Department of Plant Sciences
University of the Free State
South Africa
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohamed Hanafi Musa, PhD
Professor
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Chairman)

Hamdan Jol, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Hazandy Abdul Hamid, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MD. DELWAR HOSSAIN

Date: 12 June 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Outline of the thesis 4

2 LITERATURE REVIEW

2.1 Fiber crops 5
2.2 Kenaf 6
2.3 Studies on kenaf and its components 7
2.4 BRIS soil and its distribution 8
2.5 Development of BRIS soil 9
2.6 Chlorophyll, photosynthesis and stomatal conductance 11
2.7 Carbon stock and carbon sequestration 11
2.8 Soil C stock 13
2.9 Nutrients and growth of kenaf 14
 2.9.1 Nitrogen 14
 2.9.2 Phosphorus 15
 2.9.3 Potassium 16
2.10 Studies on kenaf related to sandy BRIS soil 17
2.11 Kenaf experiences using inorganic and organic fertilizers 18
2.12 Kenaf root characteristics 20
2.13 Growth biomass production and allocation in kenaf 20
2.14 Fiber morphology and yield 22
2.15 Summary 23

3 GENERAL MATERIALS AND METHODS

3.1 Soil sampling, preparation and analysis 24
3.2 Organic fertilizer samples and analysis 25
3.3 Plant sampling, preparation and analysis 26
3.4 Growth and biomass measurements 27
3.5 Physiological measurements 28
3.6 Statistical analysis 28
4 EFFECTS OF NITROGEN, PHOSPHORUS AND POTASSIUM ON THE PERFORMANCE OF KENAF UNDER NUTRIENT SOLUTION CULTURE

4.1 Introduction 29
4.2 Materials and Methods 31
 4.2.1 Location and plant material 31
 4.2.2 Growing of seedlings 31
 4.2.3 Growth solution and treatments 32
 4.2.4 Experimental design 32
 4.2.5 Data analysis 33
4.3 Results and Discussion 33
 4.3.1 Growth parameters 33
 4.3.1.1 Effect of nitrogen nutrition levels on kenaf plant growth and dry weights of different plant parts 33
 4.3.1.2 Effect of phosphorus nutrition levels on kenaf plant growth and dry weights of different plant parts 38
 4.3.1.3 Effect of potassium nutrition levels on kenaf plant growth and dry weights of different plant parts 41
 4.3.2 Physiological parameters 44
 4.3.2.1 Effects of levels of nitrogen, phosphorus and potassium on chlorophyll content in leaf of kenaf plant 44
 4.3.2.2 Relationship between chlorophyll content and days after treatment at 0 level of nitrogen, phosphorus and potassium 45
 4.3.2.3 Relationship between leaf photosynthesis rate and levels of nitrogen, phosphorus and potassium 47
 4.3.2.4 Effects of levels of nitrogen, phosphorus and potassium on stomatal conductance of kenaf plant 49
4.4 Conclusions 50

5. PERFORMANCE OF KENAF VARIETIES GROWN ON SANDY BRIS SOIL AS INFLUENCED BY DIFFERENT LEVELS AND SOURCES OF CARBON

5.1 Introduction 51
5.2 Materials and Methods 53
 5.2.1 Experimental site and plant materials 53
 5.2.2 Growth conditions, treatments and experimental design 53
 5.2.3 Fiber yield determination 54
 5.2.4 Fiber morphology determination 55
 5.2.5 Determination of C stock by kenaf plant 56
 5.2.6 Computation of C change in soil 57
 5.2.7 Data analysis 57
5.3 Results and Discussion 58
 5.3.1 Growth parameters 58
 5.3.1.1 Effect of C levels and variety on stem diameter, plant height, leaf number and leaf area of kenaf 58
 5.3.1.2 Effect of C levels and variety on dry weight of root, stem and leaf, and total dry weight of kenaf 66
 5.3.1.3 Partitioning of kenaf dry matter 73
5.3.2 Physiological parameters 80
5.3.3 Nutritional parameters 85
5.3.4 Fiber yield 90
5.3.5 Fiber morphology 93
5.3.6 Carbon stock 106
5.4 Conclusions 108

6 EFFECT OF CARBON LEVELS ON SHOOT AND ROOT CHARACTERISTICS OF DIFFERENT KENAF VARIETIES 111
6.1 Introduction 111
6.2 Materials and Methods 113
6.2.1 Description of site and plant materials 113
6.2.2 Growing of plants, treatments and experimental design 113
6.2.3 Root parameters 114
6.2.4 Statistical analysis 115
6.3 Results and Discussion 115
6.3.1 Shoot growth response to C levels 115
6.3.2 Dry weight of shoots and roots 118
6.3.3 Total root length and root tips 122
6.3.4 Root surface area and root volume 126
6.4 Conclusions 130

7 KENAF RESPONSES TO DIFFERENT CARBON LEVELS ON SANDY BRIS SOIL UNDER FIELD CONDITION 131
7.1 Introduction 131
7.2 Materials and Methods 133
7.2.1 Description of experimental site 133
7.2.2 Treatments, plant materials, experimental design and cultivation 133
7.2.3 Measurements and calculations 135
7.2.4 Statistical analysis 135
7.3 Results and Discussion 136
7.3.1 Variation in growth 136
7.3.2 Effects of C levels on dry matter production and its allocation 149
7.3.3 Effects of C levels on physiological parameters 154
7.3.4 Effects of C levels on fiber yield of kenaf 160
7.3.5 Carbon stock 166
7.4 Conclusions 169

8 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 170
8.1 Summary 170
8.2 Conclusions 177
8.3 Recommendations for future research 178

REFERENCES 179
APPENDICES 198
BIODATA OF STUDENT 207
LIST OF PUBLICATIONS 208