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ABSTRAK
Dua kaedah berangka dicadangkan sebagai penyelesaian sistem dua dimen i
persamaan peressapan tindak balas bersama ketaklinearan kubus, yang dikenali
sebagai sistem "Brusselator". Kaedah pertama diperolehi dengan mengguna
teknik pembezaan terhingga dan penyelesaiannya dicapai secara selari
menggunakan dua pemprosesan yang dijalankan sejajar. Kaedah kedua
berasaskan teknik pembetul-peramal. Sistem persamaan ini mempunyai aplikasi
penting dalam kinetik kimia.

ABSTRACT
Two numerical methods are proposed for the solution of a system of two­
dimensional reaction-diffusion equations with cubic non-linearity, known as the
"Brusselator" system. The first method is derived using finite difference
techniques and the solution is obtained in paralled using two processors
running concurrently. The second method is based on a predictor-eorrector
technique. This system of equations has important applications in chemical
kinetics.
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INTRODUCTION

In the study of chemical kinetics involving two variable intermediates together
with a number of initial and final products such as in the formation of ozone
by atomic oxygen via a triple collision, enzymatic reactions, and in plasma and
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laser physics in multiple couplings between modes (Adomian 1995), a two­
dimensional reaction diffusion system with cubic non-linearity must be solved.

This non-linear oscillator (Tyson 1973), associated with the chemical system

B -+ X, (a)
A + X-+ Y + D, (b)
2X + Y-+ 3X, (c) (1)
X-+ E, (d)

in which B and A are input chemicals, D and E are output chemicals and
X and Yare intermediates, was analysed by the so-called Brussels school and is
known as the "Brusselator" system. The kinetic equations associated with (A)
are given by Prigogine and Lefever (1968)

ax
at
ay
at

(2)

The rate constants k l and Is are superfluous, since the rate of steps (1a) and
(1b) can be varied by changing the parameters B and A (Tyson 1973).
Similarly, the rate constant k~ of the autocatalytic step (Ie) can be made unity
by scaling time. Following Tyson (1973), the constant k

4
is given the value

unity.
A number of authors have discussed the solution and stability of this

system (Adomian 1995; Herschkowitz-Kaufman and Nicolis 1968; Lavenda
et al. 1971; Lefever and Nicolis 1971; Nicolis 1971; Nicolis and Prigogine 1977;
Prigogine and Lefever 1968; Tyson 1973). In particular, Adomian (1995)
developed a decomposition method for solving the nonlinear system (2)
which may be extended to solve general models with wide classes of non­
linearities.

In the present paper, the solution of the "Brusselator" system will be
obtained first of all using finite difference approximations leading to a parallel
algorithm which may be implemented on two processors, each solving a linear
algebraic system as opposed to solving non-linear systems, which is often
required for integrating non-linear partial differential equations (PDEs), and
then by a predictor-corrector technique.

FINITE DIFFERENCE METHOD

Development
Let u = u(x,y,t) and v =v(x,y,t) represent the concentrations of two reaction
products PI and P

2
at time t, A and B be constant concentrations of two input

reagents, and a (a constant) represent D
x

and D
y

and reactor length.
Then, the partial differential equations associated with the "Brusselator"

system may be transformed (see, for instance, Adomian 1995) to the equivalent
system
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(
a

2
u a2u)

= B + u
2
v - (A + l)u + a. ax2 + dy2 ; °< x,y < L, t > °

(
a2v a

2
v)

=A u -liv + a. ax2 + dy2 ; °< x, Y < L, t > ° (3)

subject to Neumann boundary conditions on the boundary an of the square
n defined by the lines x=0, y=0, x=L, y=L, given by

au (0, y, t) au (L, y, t)
= 0, t~°

ax ax

au (x,o, t) au (x,L, t)
= 0, t~ °

dy dy

dv (0, y, t) dv (L, y, t)
= 0, t~°

ax ax

dv (x,o, t) dv (x, L, t)
= 0, t~ °

dy dy

and initial conditions

u(x, y, 0) = f(x,y) , (x, y)en u an
vex, y, 0) = g(x,y) , (x, y)en u an

(4)

(5)

In (5), f(x,y) and g(x,y) are given continuous functions of x and y (representing
the initial concentrations of PI and P2 respectively).

Both intervals °,,;; x ,,;; Land °,,;; y ,,;; L are divided into +1 subintervals
each of width h, so that (N+1) h = L and the time variable t is discretized in

steps of length I.. Thus at each time level t = til = n I. (n = 0,1,2, ... ) the square
n, and its boundary an, have been superimposed by a square mesh with 2

points within nand N+2 equally spaced points along each side of an.
The solutions u(x,y,t) and v(x,y,t) of (3) are sought at each point (khjh,n I.)

in n x [t> 0], where k, j = 0,1,2, ... ,N, N +1 and n=0,1,2, .... The notation U~'
.}

and V.n will be used to distinguish the solutions of the numerical methods
.}

from the theoretical solutions u(x",yj't) and v(x",yj'tn). The solution vectors un
and Vn will be ordered in the form with T denoting transpose.

un = (V;,O, V;'o, ..., V~.O,V~+I.O;V;'I,V;'I,V;'I"",V~./1V~+I.I;

n n n n. n • . n n n n)T
V 0.2' U 1,2' V 2,2' •..,VN,2' UN+I,2' ..., V O,N+/1U 1,N+/1""'U2,N+I""'VN+ I,N+ 1

V
n

= (V;'o' V/~O' ..., V~.o,v~+I.o; VO~l,v/~/' VZ1,···,V;'I' V~+/.J;

VO~, V/~' V2~ ..., , V~,2; V~+I,2; ...; VO:V+I' V/~N+I' V2';v+I"'" V~+IN+/
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with T denoting transponse. The numerical methods to be developed in this
paper are based on approximating the time derivatives in (3) by their first-order
forward-difference replacements

au(x,y,t) u(x,y,t+f)-u(x,y,t) ()
--'---=---!'" = +0 fat f
av(x,y,t) v(x,y,t+f)-v(x,y,t) ()
--'---=---!'" = +0 fat f

(7)

as f ~ 0, and the space derivatives by their second-order central difference
approximants

a2 u(x,y,t)

ax 2

a2 v (x,y,t)

ax 2

a2 u(x, y,t)
ay2

a2 v (x,y,t)

al

=h-2 [u(x-h,y,t)- 2u(x,y,t) + u(x+h,y,t)] + o (h 2
),

=h 2 [v(x-h,y,t)- 2v(x,y,t) + v(x+h,y,t)] + o (h 2
),

=h-2 [u(x-h,y,t)- 2u(x,y,t) + u(x+h,y,t)] + O(h 2
),

=h-2 [v(x-h,y,t)- 2v(x,y,t) + v (x+h,y,t)] + O(h 2
),

(8)

(9)

(10)

as f~ 0. The cubic reaction terms u2v and -u2v in (3) will be approximated

by U~,j Wj U~.~I and - (U~j V;';I, respectively, and the linear terms -(A + l)u

and Au by -(A + I)U;:1 and AU:'jrespectively. Using these replacements together

with the approximations (7) and (8) in (3) leads to the fully-implicit O(h 2 + f)
schemes

-paU::,j- paU;:j:1 +[1+4pa-fU;:j VhJ +f(A+l)]U;:1 - paU;::,j

U,,+I U" fB- pa h,j+1 = h,j +

and

_-hNV,t+-l_ -hNU"~1 +[1+4-hN+ f (U")2]VJt+-1 _ -hNV"+l _-hNU1l+1
r~ h-I,} r~ h,j-I r~ k,J h,j r~ h+I,} r~ h,j+1

= Vh" + fAU;,j ,}

f
for k,j = 1,2,.... , Nand n=O,I, ... , where p = 2' In the cases k,j =°and equations

h .
(9) and (10) introduce mesh points outside ouan, for which the problem is not
defined. However, the boundary conditions (4) give, to second order in h,

194

U;:_I

U~'I,j

Vh:~1 =

V~;,j =

U;:I' U;'.N+2 = U;~N; k = 0,1, , N + 1

U7,j' U~+2,j = U~j; j = 0,1, , N + 1

Vh~I' Vh:V+2 = V:~; k = 0,1, ,.., N +1

V " V" V N . 01 N 1I,j' N+2,j = N,j; J = " ..., +
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for all n=0,1,2, ... The relations in (11) will be used in the implementation of the
numerical methods (9) and (10) which will be discussed in Section 2.2.It is easy
to show that the principal part of the local truncation error of the implicit
schemes (9) and (10) are

[
Ia2u au (aJu aJu)] ah

2(a4u a4u)L(uv'hf)= --+(A+I-uv)--a--+-- f-- -+- (12)
" '" 2 at2 at ax2at ay2at 12 ax4 ay4

and

(13)

(14)

(15)

respectively, in which x = xl<' Y=Jj and t=tn•

A linearized von-Neumann analysis shows that the necessary conditions for
the numerical schemes (9) and (10) to be stable at the point (xI<'Y; t.J are

e(UV -A-I)
p~ 8a

dan

e(A-I)
p~ 8a

respectively. Equations (14) and (15) are trivial restrictions for small values of

hand f. A similar restriction was reported by Fakhr and Twizell (1997) for a
chemical system model with pure cubic autocatalysis in one space dimension.

Algorithm

Applying (9) and (10) to all the (N+2)2 mesh points of the square n, and its

boundary an, at time level t=tn=n e and using the boundary conditions (4) (in
which each first-order derivative is approximated by its second-order central
difference approximant as in (11)) leads to the linear algebraic systems of the
form

E, V(t + f) = Q" t = O,f, 2J!, .

E
2

Vet + f) = Q2' t = 0, f, 2J!, ..

where the block quin-diagonal matrices E,
The matrix E, is given by

(16)

and E2 are each of order (N+2)2.

E; 2cI

cI E; cI

cI E; cI

o

(17)

o
cI E; cI

2cl E;
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in which E; is a tridiagonal matrix of order +2 given by

e 2c 0

c e c

E; =

c e c

0 2c e

(18)

with c = -pet, e=l - 4c - fU~.j V;j + f(A + 1) for k, j=0,1,2, ...,N+l; n = 0,1, .... The

vectors Q. and Q2 in (16) are obtained from (9) and (10) and lis the identity

matrix of order N+2. The matrix E2 takes the form of E, with e replaced by

1-4C + f(U;)2. The solution vectors U(t + f) and V(t + f) in (16) may now
,J

be obtained using a parallel architecture involving two processors operating

concurrently with each processor employing a quin-diagonal solver to solve a

linear algebraic system at every time-step as follows

Processor 1 : E, U(t + f)= Q.
Processor 2 : E2 V(t + R.)= Q

2
(19)

The decomposition of the coefficient matrices E, and E
2

into upper and lower
triangular forms are carried out by Processors 1 and 2 respectively and the

solution vectors U(t + f) and V(t + f) are determined by forward and backward
substitutions at every time level. It is worth mentioning that in the computational
implementation of algorithm (19), only the five nonzero diagonals are stored
and used in computing the solution vectors at every time step thus minimizing
computer storage and CPU time.

Predictor-corrector Method

A predictor-corrector algorithm for the determination of the fully discrete
solutions U"+' and V"+' is given below.

Predicting u and v

Let U:.;I and v.:+1 denote the predicted approximations to u(kh, jh,(n+l) f)and

v(kh, jh,(n+l) f) respectively. Then it follows from (3), (7), and (8) U::/ and

V~71 may be obtained explicitly using the formulae

U;~l=U;:j+f[B+(U;:jrV.j-(A+l)U;'j+ :2
{U;~lj-2U:j+U;'+1,j+U;'j_1-2U:j + U;:j+l}]
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V;7 J
= v..,} + f [ AV~> (V~:J2Vk~j + :2

{Vk~ Ij - 2VkJ + Vk':J,j +VkJ-J-2Vk~j + V;}+J}]
(20) I

Correcting u and v

Once Vk,":J and Vknl-J have been determined, the solutions V:,":Jand,j ,j .,j
obtained via the equivalent corrector formulation

V1":1 = Vn + £ [B +(vn)2Vn.! _ (A+1)V n+! +~
h,) h,) k,) k,) h,) h 2

{Vn•J _ 2V n.! + Vn.! + Vn.! _2Vn.) + vn.I}]
It-l.) Ie.) Jul,) •.j'/ Ie.,} i,]+l

V'":! = Vn+ £ [AV n.! _(V n•I)2y ..! + ~
k,) h,) k,) k,) k,) h 2

{Vn.! _2Vn.1 + Vn.!+ yn.1 _2Yn.1 + Vn.!}]
4-/.) Ie.) Ie+l.) k,j-J Ie.) It,}+!

(21)

This predictor-corrector combination {(20) , (21) 1 is 0 (h2+ e)as h, e~ 0 and
correcting to convergence gives unconditional stability,

COMPARISONS BETWEEN METHODS

It has already been noted that both methods are 0 (h2+ £) as h, £~ 0 so that
neither is superior to the other with respect to accuracy.

The parallel algorithm developed above is subject to a trivial stability
requirement given by (14) and (15). The predictor-eorrector method, on the
other hand, has a more restricting stability condition if used in PECE mode and
requires correcting to convergence for unconditional stability (Twizell and
Khaliq 1981).

The parallel algorithm requires the application of quin-diagonal solvers
(with minimum storage) to solve two linear algebraic systems at every time step,
whereas the predictor-corrector technique may be applied explicitly using (20)
and (21), The predictor-corrector method is therefore faster particularly if
used in PECE mode.

Numerical Experiments

Following Adomian(1995), the PDE's (3) subject to the boundary conditions
(4) and initial conditions (5) with fix,y,0)=2+0.25y and g(x,y,0)=1+0.8x are
solved using the parallel algorithm (19) and the predictor-eorrector combination
((20), (21)1. The constants A, B, and a are given the values 2.4, 1, and 0.002

1
respectively. The discretization parameters h and fare given the values - and

1 10
-- respectively. The concentration profiles of u and vat t=5 computed using
1000
the two algorithms are depicted in Figures 1-4. It is clear from the figures that,
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2.0012

2.0006

u

F;g. J. hofik of U at, - 51" A - J, B-2 and a _ 0.{}()2 an,," th,

finite-difference method with h = 0.1 and f = 0.001

2.0018

v

0.4997

0.4995

0.4993

x
o 0

Fig 2. l70fik of Vat, - 5 I" A - J, B-2 and a-a.. {}()2 aring ",
finite-difference method with h = 0.1 and f = 0. 001
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Fig. 3. Profile of U at t = 5 far A = 1, B = 2 and a = 0.002 using the predictar-correctoT

method with h = 0.1 and e= 0.001

v

0.4997

0.4995

0.4993

y

Fig. 4. Profile of V at t = 5 far A = 1, B = 2 and a = 0.002 using the predictar-correctar

method with h = 0.1 and f. = 0.001
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for these values of h and I!, the two numerical methods are stable for this
combination of A, B, and a. This experiment was repeated to time t==lO with
various combinations of A and B within the interval 1<A, B< 5 where it was
observed that the profiles of u and v converge to(u,v)= (B , AlB) whenever A
and B are chosen such that 1 - A + B2> 0 (see also [10]). It should be noted
that the pair (u, v) =(A, AlB) is the critical point of the diffusion-free "Brusselator"
system given by (3) with a = 0. For values of A and B for which 1 - A + B2< 0,
it was found that neither of the two numerical methods converge to a fixed
concentration (as shown in Figures. 1- 4). However, when 1 - A + B2 == 0, the two
methods appeared neither to converge nor to diverge. This is because this case
marks the boundary between the convergence and divergence criteria.

CONCLUSIONS

Numerical methods based on finite difference techniques, leading to a parallel
algorithm, and a predictor-corrector algorithm have been developed for the
"Brusselator" reaction-diffusion system. These methods were tested on a model
problem from the literature. The two numerical methods were seen to converge
to the critical point of the diffusion-free "Brusselator" system for certain choices
of the constant concentrations of input reagents A and B.
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