UNIVERSITI PUTRA MALAYSIA

EXPRESSION, CHARACTERIZATION AND ORGANIC SOLVENT STABILITY OF PROTEASE FROM Bacillus pumilus 115b

PEIMAN NAZARIRAD

FBSB 2012 25
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EXPRESSION, CHARACTERIZATION AND ORGANIC SOLVENT STABILITY OF PROTEASE FROM

Bacillus pumilus 115b

By

PEIMAN NAZARIRAD

August 2012

Chairman: Prof. Raja Noor Zaliha Raja Abd. Rahman, PhD

Faculty: Biotechnology and Biomolecular Sciences

Organic solvent stable proteases have potential to be used in non-aqueous enzymatic reactions. Therefore, organic solvent stability study of these enzymes could contribute to a better understanding of their functions. _Bacillus pumilus_ 115b produce organic solvent stable protease. The protease showed stability in 25% (v/v) benzene and toluene and it was activated by non-polar organic solvents. Protein engineering is useful to clarify the mechanisms by which the enzymes are stable in the presence of organic solvents. In the current study the organic solvent stable protease gene (1065 bp) from _Bacillus pumilus_ 115b was cloned and expressed in _E.coli_ BL21 (DE3). To achieve the maximum production
of recombinant protease, parameters such as temperature, inducer concentration (IPTG), induction time and OD_{600nm} were optimized. The optimum conditions assessment consisting of; cultivation temperature at 25°C, induction timing at late stage (OD_{600nm}, 0.75) of exponential growth, IPTG 0.8 mM and post induction time for 8 h were determined.

The recombinant organic solvent stable protease from *Bacillus pumilus* 115b (55 kDa) was purified by affinity chromatography using Nickle-Sepharose. Protein peak was formed from fraction 36-40. In the range of 375-400 mM imidazole, the target protein was eluted and purified. The recombinant purified protease was verified using SDS-PAGE and Western blot analyses. The purification of recombinant organic solvent protease (OSSP) was increased to 126.89 fold with 72.83% recovery.

The purified protease was shown to be active between 30 to 60°C with an optimal temperature of 55°C. Thermostability profile indicated that the protease was stable at 37, 45 and 50 °C for 30 min. Further increase in temperature above 60 °C resulted in a reduction of the activity.

The pH activity of the purified protease was 7 to 10 with an optimum pH of 9.
Low protease activity was detected at pH below 6.0. Moreover less than 50 % of maximal protease activity was detected at pH above 10.0. The result showed that, the activity retained 68.3, 38.3 and 10 % of maximal activity at pH 10, 11 and 12, respectively. No activity was detected at pH 4 and very low protease activity was observed at pH 5. pH stability study showed that recombinant protease was fairly stable at alkaline pH condition. The enzyme was stable between pH 7.0 to 11. Further increment in pH value (12) caused 58.07 % loss of the maximal activity. Meanwhile 45.16% of maximal activity was retained in pH 6; treatment of the enzyme at pH below 5 almost destabilized the protease activity.

Metal ion study revealed that Ca++ ion increased the activity of purified recombinant protease to 118.18% compared to control while Sr++ and Na++ gave negligible enhancement effects on the activity of protease. Whereas, variable inhibitory effects were observed in the presence of Zn++ (77.28%), Mn++ (71.82%), Cu++ (53.64%), K+ (45.64%), Fe+++ (45.46) and Co++ (32.78%).

In regard to inhibitors, phenylmethanesulfonyl fluoride (PMSF) caused 100% inactivation of the protease. The purified protease was inhibited 89.2% by Diisopropylfluorophosphate (DFP). Inhibitory effects were also observed in the presence of ethylenediaminetetraacetic acid (EDTA) and bestatin with 43.4 and
31.67%, respectively. As PMSF completely deactivated the recombinant protease activity, this protease was grouped as serine protease.

The casein, a major protein component in milk was the most susceptible to hydrolysis compared to other substrates (albumin, haemoglobin, azocasien and azocoll). It was found that hemoglobin was less suitable substrate compared to casein. Recombinant protease 115b also revealed substrate specificity toward Albumin and azocasien. This protease also showed the ability of hydrolysing large molecules such as azocoll.

Organic solvent stability study showed that the recombinant protease was stable in the presence of various organic solvents. It was found that the residual activity reduced to 50, 66 and 79% of the initial when enzyme was exposed to acetonitrle, diethylamine and butanol, correspondingly (log P_{ow} <2). The residual activity of recombinant purified protease was enhanced against nonpolar organic solvents including n-dodecane, n-tetradecane and n-hexadecane (log P_{ow} >4) 175, 197 and 219%, respectively. On the other hand, application of solvents having a log P (2 to 4) showed fluctuations of 56 -115% in comparison to control.
To find the amino acid residue(s) responsible for the organic solvent stability of the protease, random mutation was carried out using error-prone PCR (EP-PCR) method. A mutated transformant which retained its protease activity but different in stability (a change in residual activity in acetonitrile) was selected. The mutant (M2-17) showed decreased stability in the presence of acetonitrile. The mutant protease was also less stable in the presence of various organic solvents compared to recombinant protease.

The residual activity of mutant protease decreased in polar solvents. It was found that the residual activity reduced to 18, 27.27 and 34% of initial while enzyme was exposed to acetonitrile, diethylamine and butanol, correspondingly (log \(P_{ow} <2 \)). The residual activity of mutant protease was enhanced against nonpolar organic solvents including n-dodecane, n-tetradecane and n-hexadecane (log \(P_{ow} >4 \)) 113.63, 136.36 and 156.8%, respectively. Furthermore, solvents having a log P (2 to 4) showed result in fluctuations between 31.81 - 70.45% compare to control. Study of organic solvent on the stability of mutant protease revealed that polar solvents could destabilize the mutant protease more than the recombinant.
Optimization and characterization (except organic solvent stability) of mutant M2-17 showed almost similar result with recombinant protease. This finding revealed the major role of a polar amino acid (Lysine 244) residue merely affecting in the organic solvent stability of protease from *Bacillus pumilus* 115b.

By comparison of the sequences of mutant and recombinant proteases, it was revealed that a point mutation on the polar amino acid (Lysine 244 to Isoleucine) had occurred which could significantly change the organic solvent stability. This finding revealed the polar amino acid (Lysine 244) residue is responsible for organic solvent stability of protease from *Bacillus pumilus* 115b.
EKSPRESI, PENCIRIAN DAN KESTABILAN PELARUT ORGANIK PROTEASE DARI Bacillus pumilus 115b

Oleh

PEIMAN NAZARIRAD

Ogos, 2012

Pengerusi: Prof. Raja Noor Zaliha Raja Abd. Rahman, PhD

Fakulti: Bioteknologi dan Sains Biomolekul

Protease stabil pelarut organik berpotensi untuk digunakan dalam tindak balas enzim tanpa air. Oleh itu, kajian kestabilan enzim di dalam pelarut organik boleh menyumbang kepada pemahaman yang lebih baik tentang fungsi enzim-enzim tersebut. Bacillus pumilus 115b menghasilkan protease stabil pelarut organik. Protease terhasil menunjukkan kestabilan dalam 25% (v/v) benzena dan toluena, dan ia telah diaktifkan oleh pelarut organik tidak berkutub. Kejuruteraan protein berguna untuk menjelaskan mekanisme bagaimana enzim itu stabil dalam kehadiran pelarut organik. Dalam kajian semasa, gen protease stabil pelarut
organik (1065 bp) daripada *Bacillus pumilus* 115b telah diklon dan diekspres dalam *E.coli* BL21 (DE3). Untuk mencapai penghasilan protease rekombinan yang maksimum, parameter seperti suhu, kepekatan pencetus (IPTG), masa induksi dan OD$_{600nm}$ telah dioptimumkan. Penilaian keadaan optimum terdiri daripada: suhu pembiakan pada 25°C, induksi masa pada peringkat akhir pertumbuhan eksponen (OD$_{600nm}$, 0.75), kepekatan IPTG 0.8 mM dan masa pos-induksi selama 8 j telah ditentukan.

Protease rekombinan stabil pelarut organik daripada *Bacillus pumilus* 115b (55 kDa) telah ditulenkan dengan teknik kromatografi afiniti menggunakan nikel-Sepharose. Puncak protein adalah terdiri daripada pecahan-pecahan 36-40. Dalam julat 375-400 mM imidazole, protein sasaran berjaya ditulenkan. Penulenan protease rekombinan telah dipastikan menggunakan SDS-PAGE dan analisa Western blot. Penulenan protease rekombinan pelarut organik (OSSP) telah meningkat 126.89 kali ganda dengan penghasilan sebanyak 72.83%.

Protease tertulen telah dikenalpasti aktif pada suhu antara 30 dan 60°C dengan suhu optimum 55°C. Profil kestabilan suhu menunjukkan bahawa protease adalah stabil pada 37, 45 dan 50°C selama 30 minit. Peningkatan suhu selanjutnya melebihi 60°C menyebabkan pengurangan aktiviti enzim tersebut.

Kajian ion logam menunjukkan bahawa ion Ca** meningkatkan aktiviti protease rekombinan tertulen kepada 118.18% berbanding pemalar, manakala Sr** dan Na** memberikan kesan peningkatan terabai pada aktiviti protease. Manakala, kesan-kesan pembolehubah penyahaktif telah dikenalpasti dalam kehadiran Zn** (77.28%), Mn** (71.82%), Cu** (53.64%), K+ (45.64%), Fe+++ (45.46) dan Co++ (32.78%).
Dalam kes penyahaktif, phenilmethilsulfonil florida (PMSF) telah menyebabkan penyahaktifan protease sebanyak 100%. Protease tertulen telah dinayahaktif sebanyak 89.2% oleh Diiisopropilfluorofosfat (DFP). Kesah penyahaktifan juga dikesan dalam kehadiran asid etilinediamintretasetik (EDTA) dan bestatin sebanyak 43.4 dan 31.67%, masing-masing. Disebabkan PMSF telah menyahaktifkan aktiviti protease rekombinan sepenuhnya, protease ini telah diklasifikasikan sebagai protease serin.

Kasein, komponen protein utama dalam susu adalah yang paling mudah terdedah kepada hidrolisis berbanding substrat-substrat lain (albumin, hemoglobin, azokasien dan azokol). Telah didapati bahawa hemoglobin adalah substrat yang kurang sesuai berbanding kasein. Protease rekombinan 115b juga menunjukkan spesifikasi substrat cenderung kepada albumin dan azokasien. Protease ini juga menunjukkan keupayaan menghidrolisis molekul besar seperti azokol.

Kajian kestabilan pelarut organik menunjukkan bahawa protease rekombinan adalah stabil dalam kehadiran pelbagai pelarut organik. Telah didapati bahawa aktiviti berbaki terkurang kepada 50, 66 dan 79% berbanding aktiviti asal apabila enzim terdedah kepada acetonitril, diethilamin dan butanol, masing-masing (log
Aktiviti berbaki protease rekombinan tertulen telah dipertingkatkan terhadap pelarut organik tidak berkutub termasuklah n-dodekan, n-tetradekan dan n-hexadekan (log Po / w > 4) 175, 197 dan 219%, masing-masing. Sebaliknya, penggunaan pelarut yang mempunyai P log (2-4) menunjukkan turun naik 56-115% setelah dibandingkan dengan pemalar.

Untuk mencari asid-asid amino yang bertanggungjawab bagi kestabilan protease terlarut organik, mutasi rawak telah dijalankan menggunakan kaedah cenderung-ralat PCR (EP-PCR). Satu mutan transforman dengan aktiviti protease kekal tetapi berbeza kestabilannya (perubahan dalam aktiviti berbaki dalam asetonitril) telah dipilih. Mutan (M2-17) menunjukkan penurunan kestabilan dalam kehadiran asetonitril. Protease mutan juga kurang stabil dalam kehadiran pelbagai pelarut organik berbanding protease rekombinan.

Aktiviti berbaki protease mutan berkurangan dalam pelarut kutub. Telah didapati bahawa aktiviti berbaki berkurangan kepada 18, 27,27 dan 34% berbanding aktiviti asal, apabila enzim terdedah kepada asetonitril, diethilamin, dan butanol, masing-masing (log Po / w <2). Aktiviti berbaki protease mutan telah dipertingkatkan terhadap pelarut organik tidak berkutub termasuklah n-dodekan, n-tetradekan dan n-hexadekan (log Po / w > 4) 113.63, 136.36 dan
156.8%, masing-masing. Tambahan pula, pelarut yang mempunyai P log (2-4) mengakibatkan turun naik antara 31.81%-70.45 jika dibandingkan dengan pemalar. Kajian pelarut organik ke atas kestabilan protease mutan menunjukkan bahawa pelarut berkutub boleh menjejaskan kestabilan protease mutan lebih daripada rekombinan. Pengoptimuman dan pencirian (kecuali kestabilan pelarut organik) mutan M2-17 menunjukkan hasil yang hampir sama dengan protease rekombinan. Penemuan ini menunjukkan peranan utama asid amino berkutub (lisin 244) hanya mempengaruhi kestabilan protease pelarut organik daripada Bacillus pumilus 115b.

Perbandingan jujukan mutan-mutan dan protease rekombinan telah menunjukkan bahawa mutasi titik pada asid amino berkutub (lisin 244 kepada isoleucine) telah berlaku dan boleh mengubah kestabilan pelarut organik secara signifikan. Penemuan ini mendedahkan asid amino berkutub (lisin 244) bertanggungjawab untuk kestabilan protease pelarut organik daripada Bacillus pumilus 115b.
ACKNOWLEDGEMENTS

I wish to express my foremost appreciation to my supervisors Professor Dr. Raja Noor Zaliha Raja Abdul Rahman, Professor Dato’ Dr. Abu Bakar Salleh and Professor Dr. Mahiran Basri for their invaluable guidance, encouragement, help and patient through the course of this thesis by enlightening me scientifically and resolving many technical problems till the completion of this project.
I certify that a Thesis Examination Committee has met on 7 August 2012 to conduct the final examination of Peiman Nazarirad on his thesis entitled “Expression, Characterization, and Organic Solvent Stability of Protease from Bacillus pumilus 115b” in accordance with the Universities and University College Act 1971 and the Constitution of the universiti putra Malaysia [P.U.(A) 106] 15 march 1998. The Committee recommends that the candidate be awarded the Doctor of Philosophy.

Members of the Examination Committee are as follows:

Mohd Arif bin Syed, PhD
Professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Chairman)

Sieo Chin Chin, PhD
Associate professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Internal examiner)

Shuhaimi bin Mustafa, PhD
Associate professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Internal examiner)

Watanalai Panbangred, PhD
Professor
Mahidol University
Thailand
(External examiner)

SEOW HENG FONG, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 December 2012
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Raja Noor Zaliha Raja Abdul Rahman, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Abu Bakar Salleh, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mahiran Basri, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT,PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

PEIMAN NAZARIRAD

Date: 7 August 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xiv</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Proteases</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Sources of Proteases</td>
<td>4</td>
</tr>
<tr>
<td>2.2.1 Plants Proteases</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2 Animal Proteases</td>
<td>6</td>
</tr>
<tr>
<td>2.2.3 Microbial Protease</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Classification of Proteases</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1. Serine Proteases</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2. Aspartic Proteases</td>
<td>12</td>
</tr>
<tr>
<td>2.3.3. Cysteine / thiol Proteases</td>
<td>13</td>
</tr>
<tr>
<td>2.3.4. Metalloproteases</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Application of protease</td>
<td>14</td>
</tr>
<tr>
<td>2.4.1 Detergent Additives</td>
<td>14</td>
</tr>
<tr>
<td>2.4.2 Leather Industry</td>
<td>16</td>
</tr>
<tr>
<td>2.4.3 Food Industry</td>
<td>17</td>
</tr>
<tr>
<td>2.4.4 Pharmaceutical Industry</td>
<td>19</td>
</tr>
<tr>
<td>2.4.5 Waste Treatment</td>
<td>20</td>
</tr>
<tr>
<td>2.4.6 Peptide synthesis (anhydrous system)</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Organic solvent stable protease</td>
<td>22</td>
</tr>
<tr>
<td>2.6 Inactivation of enzymes by organic solvents</td>
<td>23</td>
</tr>
</tbody>
</table>
2.6.1 Changing the enzyme’s conformation 25
2.6.2 Reduction of conformational flexibility 26
2.6.3 Loss of critical water 27
2.7 Directed evolution of enzymes 27
2.8 Recombinant expression systems 30
2.9 Expression of proteins in prokaryotic systems 31
2.10 Efficient expression vectors 32
2.11 Strategies for production 34
 2.11.1 Cytoplasmic expression 35
2.12 Purification of recombinant proteins 37
 2.12.1 Affinity-fusion chromatography 38
 2.12.1.1 Immobilized metal ion affinity chromatography 40

3 MATERIALS AND METHODS 42
3.1 Materials 42
3.2 Methods 42
 3.2.1 Preparation of media and solutions 42
3.3 Assay of protease activity 44
3.4 Preparation of tyrosine standard curve 45
 3.4.1 Protein Determination 47
3.5 The Molecular Weight Determination 47
3.6 Expression of recombinant protease in prokaryotic system 48
 3.6.1 Primer design for amplification of organic solvent
 stable protease gene 48
 3.6.2 Amplification of organic solvent stable gene 49
 3.6.3 Detection of amplified PCR product 50
 3.6.4 Purification of the amplified PCR product 50
 3.6.5 Extraction of plasmid pET-32 b (+) from E.coli TOP 10 50
 3.6.6 Detection of plasmid pET-32 b (+) from E.coli TOP10 51
 3.6.7 Purification of the extracted plasmid pET-32b (+) 51
 3.6.8 Ligation mixture 52
 3.6.9 Preparation of competent cells 52
 3.7.1 Transformation 53
 3.7.2 Extraction of the transformed plasmid pET32b (+) from E.coli
 BL21 (DE3) 53
3.8 SDS-PAGE and western blotting analyses 54
3.9 Expression of soluble organic solvent stable protease 54
 3.9.1 Optimization of the expression of recombinant soluble protease 55
 3.9.2 Effect of cultivation temperature on protease expression 56

xix
3.9.3 Effect of inducer concentration on protease expression 56
3.9.4 Effect of induction at different $\text{OD}_{600\text{nm}}$ on the expression of protease 57
3.9.5 Effect of induction time on the expression of protease 57

3.10 Purification of recombinant organic solvent stable protease 58

3.11 Characterization of recombinant purified enzyme 59
3.11.1 Effect of temperature on protease activity 59
3.11.2 Effect of temperature on protease stability 59
3.11.3 Effect of pH on protease activity 60
3.11.4 Effect of pH on protease stability 60
3.11.5 Organic solvent-stability of enzyme 61
3.11.6 Effect of metal ions on protease activity 61
3.11.7 Substrate specificity of purified enzyme 62
3.11.8 Effect of protease inhibitors on protease activity 62

3.12.1 Purification of mutated amplified PCR product 63
3.12.2 Extraction of plasmid pET-32 b (+) from *E.coli* TOP10 64
3.12.3 Detection of plasmid pET-32 b (+) from *E.coli* TOP10 64
3.12.4 Purification of the extracted plasmid pET-32b (+) 64
3.12.5 Ligation mixture 64
3.12.6 Transformation 65
3.12.7 Screening 65
3.12.8 Extraction of the transformed plasmid pET32b (+) from *E.coli* BL21 (DE3) 66

3.13 Optimization of the expression 67
3.13.1 Effect of cultivation temperature on mutated protease expression 67
3.13.2 Effect of inducer concentration on mutated protease expression 67
3.13.3 Effect of induction at different OD on mutated protease expression 68
3.13.4 Effect of induction time on mutated protease expression 68

3.14 Purification of mutated organic solvent stable protease 68

3.15 Characterization of mutated purified protease 68
3.15.1 Effect of temperature on mutated protease activity 68
3.15.2 Effect of temperature on mutated protease stability 69
3.15.3 Effect of pH on mutated protease activity 69
3.15.4 Effect of pH on mutated protease stability 69
3.15.5 Organic solvent-stability of mutated enzyme 69
3.15.6 Effect of metal ions on mutated protease activity 70
3.15.7 Substrate specificity of mutated purified enzyme 70
3.15.8 Effect of protease inhibitors on mutated protease activity 70
3.16 Sequence analyses 71
3.17 Statistical analysis 71

4 RESULTS AND DISCUSSIONS 72
4.1 Cloning in prokaryote expression system (Escherichia coli) 72
 4.1.1 Amplification of the organic solvent stable protease Gene 73
4.2 Expression of organic solvent stable protease 74
 4.2.1 Molecular weight determination of recombinant protease 115b(SDS-PAGE) 79
4.3 Optimization of recombinant organic solvent stable protease expression 81
 4.3.1 Effect of cultivation temperature on the protease expression 81
 4.3.2 Effect of inducer concentration on protease expression 84
 4.3.3 Effect of different OD600 on protease expression 87
 4.3.4 Effect of induction time on protease expression 90
4.4 Purification of recombinant organic solvent stable protease 93
4.5 Characterization of the recombinant purified enzyme 101
 4.5.1 Effect of temperature on protease activity and stability 102
 4.5.2 Effect of pH on protease activity and stability 105
 4.5.3 Organic solvent-stability of enzyme 111
 4.5.4 Effect of metal ions on protease activity 115
 4.5.6 Substrate specificity of purified enzyme 119
 4.5.7 Effect of protease inhibitors on protease activity 122
4.6 Mutation of organic solvent stable protease gene from 115b 125
4.7 Cloning of mutated protease gene 126
 4.7.1 Amplification of the protease gene from 115b under mutagenic conditions 126
 4.7.2 Extraction of plasmid pET-32 b (+) from E.coli TOP 10 126
 4.7.3 Transformation 129
4.8 Screening 129
4.9 Expression of the mutated protease gene 130
 4.9.1 Optimization of expression 132
 4.9.2 Effect of cultivation temperature on expression 132
 4.9.3 Effect of inducer concentration on expression 134
 4.9.4 Effect of different OD on expression 136
 4.9.5 Effect of induction time on expression 138
4.10 Purification of organic solvent stable protease 141
4.11 Characterization of purified protease 145
 4.11.1 Effect of temperature on protease activity 145
 4.11.2 Effect of temperature on protease stability 148
 4.11.3 Effect of pH on protease activity and stability 150
 4.11.4 Organic solvent-stability of protease 154
 4.11.5 Effect of metal ions on protease activity 160
 4.11.6 Substrate specificity of purified enzyme 163
 4.11.7 Effect of inhibitors on protease activity 166

5 CONCLUSION AND RECOMMENDATIONS 170
 5.1 Conclusion 170
 5.2 Recommendations 174

REFERENCES 175
APPENDICES 201
BIODATA OF STUDENT 212