OVER-EXPRESSION OF GIBBERELLIN-20 OXIDASE GENE IN KENAF
(Hibiscus cannabinus L) FOR INCREASED FIBER QUALITY

SAMANTHI PRIYANKA WITHANAGE

FBSB 2012 21
OVER-EXPRESSION OF GIBBERELLIN-20 OXIDASE GENE IN KENAF
(Hibiscus cannabinus L) FOR INCREASED FIBER QUALITY

BY

SAMANTHI PRIYANKA WITHANAGE

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the Degree of
Doctor of Philosophy

May 2012
DEDICATION

My late mother Daya Rajapaksa,

Father Srimapala Withanage

Husband Kalyanapriya Ramanayake

and

My lovely daughters

Pamuditha and Ravishika
Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

OVER-EXPRESSION OF GIBBERELLIN- 20 OXIDASE GENE IN KENAF (Hibiscus cannabinus L) FOR INCREASED FIBER QUALITY

By

SAMANTHI PRIYANKA WITHANAGE

May 2012

Chairman : Assoc. Prof. Suhaími B Napis, PhD

Faculty : Biotechnology and Biomolecular Sciences

Kenaf (Hibiscus cannabinus L.) is a multipurpose herbaceous crop belongs to the family Malvaceae. It is one of the potential alternatives of natural fibers for biocomposite production including pulp and paper. Kenaf generally grows very fast in the tropics. The kenaf stem consists of long bast (represents 34 - 38% of the stem) and short core fibers (represents 62 - 66% of the stem). The success of the kenaf fiber used industries has relied upon its high yield per hectare and, the quality and quantity
of its bast and core fibers. Current data on the yield of kenaf fibers shows that there is still plenty of room for improvement. Therefore, the development of improved kenaf planting materials is one of the areas where more research should be focused upon. Ideally, longer fiber length indicated by short core fiber and higher cellulose content are required for high quality kenaf fiber. In plants, gibberellic acid (GA) which is an important plant hormone influences the structural development of a plant and its organs. The hormone stimulates cell division and elongation, and promotes transition of vegetative to reproductive growth. Therefore, in this study, it is hypothesized that by increasing the active GA, the fiber length and cellulose content (biomass) of kenaf would be increased. The hypothesis was tested by evaluating the effects of over expression of gibberellin 20 oxidase (GA20ox) gene, one of the key enzymes in GA biosynthetic pathway in kenaf.

Two forms of GA 20 oxidase gene i.e. a gene with intron (AtGA20ox-In) and a gene without the intron (AtGA20ox-cDNA) were isolated from *Arabidopsis thaliana* ecotype Colombia and overexpressed in kenaf under the control of the double CaMV 35S promoter. This was followed by *in planta* (*in vitro*) transformation into the V36 (intermediate flowering) and G4 (late flowering) varieties of kenaf. The putative transformants over expressing AtGA20ox gene were screened for hygromycin B resistance and confirmed by PCR and Southern blot analysis. The transgene transcripts of the transgenic kenaf were analyzed by real time PCR, and the levels of bioactive GA$_1$ and GA$_4$ were determined by GC-MS analysis. The lines that showed
higher levels of bioactive GA (0.3-1.52 ng/g fresh weight) were chosen for further characterization of their morphological and biochemical traits including vegetative and reproductive growth, fiber dimensions and chemical composition.

Different levels of GA20ox expression were observed in the transgenic lines ranging from 2 to 39 fold increases of the transcripts level. The expression level was correlated positively with the production of bioactive GA1 and GA4. Various types of phenotypes as short non flowering, short early flowering, normal flowering and tall non flowering were observed among the transgenic lines in both of the varieties transformed. Two transgenic lines (V36-2 and V36-3) out of four lines produced high levels of GAs (1.43 and 1.23 ng/g fresh weight) flowered at 7th week. It was considered as very early compare to untransformed plants which flowered at 13th week. However, these lines were unable to complete their reproductive phase resulting in poor seed production. The other two lines (G4-5 and G4-7) showed impaired vegetative and reproductive growth characterizing by lack of reproductive phase. It is speculated that the lines might be subjected to gibberellins homeostasis where those with normal levels of GAs (around 0.3ng/g fresh weight) grew phenotypically normal, whereas the lines that produced slightly higher concentrations of GAs (0.32-0.52 ng/g fresh weight) produced better vegetative growth which exhibited delayed in flowering or failed in initiating flowering. Positive impact of gibberellins on biochemical composition, fiber dimensions and their derivative values of kenaf was demonstrated in some lines of the transgenic
kenaf including the increased cellulose content of 91% and increased fiber length of 3.22 mm for bast fiber and 1.1 mm for core fiber. It has been noticed that the levels of bioactive GA\textsubscript{1} and GA\textsubscript{4} have influence in determining the vegetative growth and reproductive development of kenaf. But it required a further detailed study to confirm the critical level of this bioactive GA. This study confirmed the hypothesis that GA is extremely important for increasing the length of the kenaf fiber. The findings can be used as a basis for further improving the quality and quantity of kenaf in the industry.
PENG-EKSPRESAN LAMPAU GEN GIBBERELLIN-20 OXIDASE DALAM KENAF (*Hibiscus cannabinus* L.) UNTUK PENINGKATAN KUALITI SERAT

Oleh

SAMANTHI PRIYANKA WITHANAGE

Mei 2012

ABSTRAK

Pengerusi : Prof Madya Suhaimi B Napis, PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Kenaf (*Hibiscus cannabinus* L.) adalah tanaman pelbagaiguna yang digolongkan di bawah famili Malvaceae. Serat atau gentian aslinya merupakan salah satu alternatif yang berpotensi untuk penghasilan biokomposit termasuk pulpa dan kertas. Kenaf umumnya cepat tumbesar di kawasan tropika. Batang kenaf terdiri daripada bahagian ‘bast’ yang mempunyai serat yang panjang (mewakili 34 - 38% daripada batang) dan bahagian teras yang mempunyai serat yang pendek (mewakili 62 - 66% daripada batang). Kejayaan industri berasaskan serat kenaf bergantung kepada penghasilan kenaf yang tinggi per hektar dan juga kualiti dan kuantiti serat ‘bast’ dan teras nya. Merujuk kepada data semasa penghasilan serat kenaf jelas menunjukkan
bahawa masih terdapat banyak ruang untuk penambahbaikan ke atas tanaman ini. Oleh itu, pembangunan stoktanaman kenaf yang lebih baik merupakan salah satu bidang penyelidikan yang sepantunya diberikan tumpuan. Sebaiknya penambahan panjang serat teras yang selalunya pendek dan peningkatan kandungan selulosa yang lebih tinggi merupakan keperluan penting bagi serat kenaf yang berkualiti tinggi. Hormon ‘Gibberellic asid’ (GA), merupakan hormon tumbuhan yang penting dalam mempengaruhi pembangunan struktur tumbuhan dan organnya. Hormon ini meransang pembahagian dan pemanjangan sel, dan menggalakkan peralihan fasa pertumbuhan vegetatif kepada fasa pebieniakan. Oleh itu, hipotesis dalam kajian ini adalah apabila kandungan ‘GA’ aktif meningkat, maka panjang serat dan kandungan selulosa (biojisim) dalam kenaf juga akan meningkat. Hipotesis ini telah diuji dengan menilai kesan daripada pengekpresan lampau gen gibberellin 20 oksidase (GA20ox), yang merupakan salah satu daripada enzim utama dalam laluan biosintetik GA dalam kenaf. Dua bentuk gen GA 20 oksidase iaitu gen bersama intron (AtGA20ox-In) dan gen tanpa intron (AtGA20ox-cDNA) telah diasangkalan daripada Arabidopsis thaliana jenis Colombia dan pengekspresan lampau dalam kenaf adalah di bawah kawalan promoter berganda CaMV 35S. Ini diikuti dengan transformasi secara ‘in planta’ (‘in vitro’) ke atas dua varieti kenaf ia itu V36 (berbunga pertengahan) dan G4 (berbunga lewat). Transformasi yang disasarkan ke atas gen AtGA20ox disaring menggunakan antibiotik hygromycin B dan disahkan melalui analisis PCR dan penghibridan ‘Southern’. Transkrip transgen berkenaan dalam kenaf transgenik dianalisis dengan PCR masa-nyata, dan tahap kandungan bioaktif GA₁ dan GA₄ ditentukan melalui analisis GC-MS. Kenaf transgenik yang menunjukkan tahap GA yang tinggi (0.3-
1.52ng/g berat bersih) telah dipilih untuk pencirian lanjut dari segi morfologi dan biokimia termasuklah fasapertumbuhan vegetatif dan pembiakan, dimensi dan komposisis erat masing.

Tahap ekspresi GA20ox yang berbeza telah diperhatikan dalam kenaf transgenik iaitu kenaikan di antara 2-39 kali ganda berbanding kawalan. Tahap expresi tersebut adalah berkorelasi secara positif dengan pengeluaran bioaktif GA\(_1\) dan GA\(_4\). Pelbagai jenis fenotip diperhatikan di kalangan progeni kenaf transgenik di dalam kedua-dua varieti yang telah ditransformasikan. Dua (V36-2 dan V36-3) daripada empat jenis kenaf transgenik yang menghasilkan tahap GA yang lebih tinggi (1.43 dan 1.23 ng/ g berat bersih), berbunga pada minggu ketujuh. Ia dianggap sebagai sangat awal berbanding dengan tumbuhan yang tidak ditransformasikan yang hanya mula berbunga pada minggu ke-13 dan mereka tidak dapat melengkapkan fasa pembiakan yang menyebabkan pengeluaran benih yang lemah. Dua transgenik yang lain pula (G4-5 dan G4-7) menunjukkan pertumbuhan vegetatif dan pembiakan yang terjejas. Kejadian ini berlaku, mungkin disebabkan oleh ‘homeostasis gibberellin’ di mana transgenik yang mempunyai tahap GA yang biasa (0.3ng/g berat berish) menjana fenotip normal, sedangkan bagi mereka yang menghasilkan GAs yang tinggi (0.32-0.52 ng/g berat bersih) mempunyai pertumbuhan vegetatif yang lebih baik iaitu yang menunjukkan lambat berbunga atau tidak berbunga langsung. Kesaran positif GA pada kandungan biokimia dan dimensi serat, dan nilai-nilai terbitan kenaf telah juga ditunjukkan dalam beberapa kenaf transgenik tersebut seperti peningkatan kandungan selulosa setinggi 91% dan pemanjangan serat sebanyak 3.22 mm untuk
ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my committee chairperson, Assoc. Prof. Dr. Suhaime B.Napis for providing me valuable comments, ideas and the opportunity to develop my own individuality and self confidences as a researcher by allowing to work with such independence. My Sincere appreciation is extended to Assoc. Prof. Dr. Mohammad Puad Abdullah for his patience, motivation, enthusiasm and immense knowledge. His guidance followed me in all the time of research and writing of thesis. My heartiest thanks go to Prof. Dr. Nor Aini Ab.Shukor for her valuable comments, guidance, encouragement and kind support in all the way of my study.

I am extremely grateful to Dato Dr. Abdul Aziz S. A. Kadir, Secretary General, International Rubber Research and Development Board, not only for arranging my Doctoral research at Malaysia but also for his warm hospitality and kindness towards me and my family. My grateful thanks go to Malaysian Technical Cooperation Programme (MTCP) for awarding me the fellowship for this study and Research University Grant (RUGS) for giving financial support for the research. I am also grateful to my employer organization Rubber Research Institute of Sri Lanka for grant my deputation to pursue my study and the staff of Genetics and plant breeding for their heart full support.
My sincere thanks go to Assoc. Prof. Dr. Norihan Saleh at Faculty of Biotechnology and Biomolecular Sciences, Prof. Dr. Paridah Md Tahir and Prof. Dr. Hamami Sahri at Faculty of Forestry Universiti of Putra Malaysia, for kindly allowing me to use their laboratories. Also it is my greatest pleasure to acknowledge Mr. Bahrum Zainal, Ms. Ana Salleza and all staff members at institute of tropical forestry and forest products for their fullest support.

I wish to express my sincere thanks to Dr. Nghia, Dr. Ky, Dr. Thuc and Dr. Shahana for their technical knowledge. Heart full thanks to my fellow lab mate, Hirul, Thanh, Chi, Suresh Waisan, Hasna, Lila, Kali, Yanti, Kea Tai, Raosan, Fathch and Mostafa for their encouragement and warm friendship. Many thanks go to Vasagi for translating the abstract into Bhasa Malay.

During this period I have been blessed and strengthen by a friendly, cheerful group of Sri Lankans; Kumudu, Pri, Devi, Pagthi, Fuzi, Shantha, Nalaka, Mohan and little Navi you are forever in heart. Just a little reminder to my Rama, this work is never possible without your endless encouragements, love and support given me. Also love to my darling Pamu and Ravi giving me a life. Finally, waiting to thank to my beloved parents for their unconditional love, as still I am looking the suitable words.
I certify that a Thesis Examination Committee has met on 24th May 2012 to conduct the final examination of Samanthi Priyanka Withanage on her thesis entitled “Over-expression of Gibberellin- 20 oxidase gene in kenaf (Hibiscus cannabinus L.) for increased fiber quality” in accordance with the Universities and University Collages Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student awarded the Doctor of Philosophy.

Members of the Thesis Examination committee were as follows:

Raha bintit HjAbdul Rahim, PhD
Professor
Department of Cell and Molecular Biology
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Janna Ong binti Abdullah, PhD
Associate Professor
Department of Microbiology
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Faridah binti Qamaruz Zaman, PhD
Associate Professor
Department of Biology
Faculty of Sciences
Universiti Putra Malaysia
(Internal Examiner)

D.P.S.T.G.Attanayake, PhD
Professor
Faculty of Agriculture and Plantation Management
Wayambe University
Sri Lanka
(External Examiner)

SEOW HENG FONG,PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date 28 June 2012
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follows:

Suhaimi B Napis, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Mohammad Puad Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Nor Aini Bt Ab Shukor, PhD
Professor
Faculty of Forest and Forest Resourses
Universiti Putra Malaysia
(Member)

Hairul Azman B Roslan, PhD
Lecturer
Faculty of Resource Science and Technology
University Malaysia Sarawak
Kota, Samarahan Sarawak
(Member)

BUTANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SAMANTHI PRIYANKA WITHANAGE

Date: 24 May 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW
 2.1 Kenaf (Hibiscus cannabinus L.)
 2.1.1 Ecological and economical importance of kenaf
 2.1.2 Genetic improvement of kenaf
 2.2 Hormones
 2.2.1 Gibberellins (GAs)
 2.2.2 Gibberellin regulation in plants
 2.3 Genetic Modification of GA Metabolism in Plants
 2.4 Agrobacterium tumefaciense - Mediated Gene Transformation
 2.5 Gene Transformation Carried out with Kenaf
 2.6 Gateway Cloning Technology for Gene Transformation
 2.7 Real Time PCR for Gene Expression Studies

3. MATERIALS AND METHODS
 3.1 Amplification of Arabidopsis AtGA20 Oxidase 1 Gene (cDNA and Genomic Clones)
 3.1.1 Plant materials and growth of plants
 3.1.2 Extraction of nucleic acids
 3.1.3 Isolation of mRNA and synthesis of the first strand cDNA

xvi
3.1.4 Designing the oligonucleotide primers ... 48
3.1.5 Amplification of clone AtGA20ox - cDNA and clone AtGA20ox-In by PCR .. 49
3.1.6 Horizontal gel electrophoresis for PCR products 50
3.1.7 Purification of PCR product .. 50
3.1.8 Sequencing verifications of the AtGA20ox-cDNA and AtGA20ox-In .. 51

3.2 Construction of Expression Vectors using Gateway Technology 55
3.2.2 Amplification of AtGA20ox from verified pGEM – T clone 57
3.2.3 LR construction reaction for expression vector pEXP– AtGA20ox 60

3.3 Transformation of pEXP– AtGA20ox into Agrobacterium tumefaciens Strain LBA 4404 .. 61
3.3.1 Preparation of competent cells of Agrobacterium tumefaciens strain LBA 4404 .. 61
3.3.2 Transformation of pEXP–AtGA20ox-cDNA and pEXP- AtGA20ox – In into A.tumefaciens LBA 4404 competent cells by electroporation 62

3.4 Verification by Sequencing .. 63

3.5 Agrobacterium Mediated Transformation in Kenaf 63
3.5.1 Preparation of plant material for transformation 64
3.5.2 Agrobacterium mediated plant transformation 64

3.6 Confirmation of Transgenic Plants ... 68
3.6.1 Isolation of genomic DNA from kenaf ... 68
3.6.2 Confirmation by PCR amplification ... 70
3.6.3 Confirmation by Southern analysis ... 71

3.7 Screening of T1 Progeny ... 75
3.7.1 Determination of minimal inhibitory concentration (MIC Index) of hygromycin B, for putative transformed kenaf seedlings 75
3.7.2 Segregation Analysis of T1 transformants ... 76

3.8 Morphological Analysis of Transgenic Plants ... 76
3.8.1 Plant morphology ... 76
3.8.2 Fiber morphology ... 77
3.8.3 Histochemical visualization .. 79
3.8.4 Bio-chemical analysis ... 79
3.9 Molecular Analysis of Transgenic Kenaf

3.9.1 Expression analysis of AtGA20ox gene in transgenic plants by real
time PCR

3.9.2 Analysis of endogenous active gibberellins (GA1 and GA4)

4. RESULTS

4.1 Amplification of Arabidopsis thaliana AtGA20 Oxidase 1 Gene

4.2 The Construction of Over Expression Vectors, pMDC32-AtGA20ox-cDNA
and pMDC32-AtGA20ox-In

4.3 Agrobacterium Mediated Transformation of pMDC32-AtGA20ox,
Expression Clones to the Kenaf

4.4 Molecular Analysis for the Confirmation of CaMV35S:AtGA20ox
Transformants at T0 Generation

4.4.1 PCR screening of putative transformants

4.4.2 Confirmation by Southern blot analysis

4.5 Morphological Analysis of CaMV35S:AtGA20ox-In T0 Transformants

4.5.1 Plant growth and development

4.5.2 Reproductive development

4.6 Analysis of CaMV35S:AtGA20ox-In T1 Transforments

4.6.1 Segregation analysis of T1 generation

4.6.2 Molecular confirmation of transformants of T1 generation

4.6.3 Morphological analysis of T1 transformants

4.7 Fiber Morphology of T0 Generation

4.7.1 Fiber dimensions

4.7.2 Fiber derivative values

4.8 Biochemical Analysis of CaMV35S:AtGA20ox-In T0 Lines

4.8.1 Holocellulose content

4.8.2 Alpha cellulose content

4.8.3 Lignin content

4.8.4 Ash content

4.9 Expression Analysis of the T0 and T1 Populations of CaMV35S: AtGA20ox,
kenaf
4.10 Quantification of Endogenous Bioactive GA levels in the Transgenic T₀ and T₁ Lines 151

5. DISCUSSION 154

5.1 Production of the CaMV35S:AtGA20ox-Ins Transgenic Kenaf 154
5.2 The CaMV35S:AtGA20ox-Ins kenaf Showed Higher Levels of Endogenous Bioactive gibberellins (GAs) 159
5.3 Impact of Bioactive Gibberellins on Vegetative Growth and Reproductive Development of CaMV35S:AtGA20ox-Ins Kenaf 164
5.4 Higher levels of Bioactive Gibberellins Altered the Chemical Composition of the CaMV35S: AtGA20ox-Ins kenaf 171
5.5 Influence of Gibberellins on Fiber Dimensions and Their Derived Values of Transgenic Kenaf 174

6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 178

REFERENCES 182
APPENDICES 212
BIO DATA OF STUDENT 235
LIST OF PUBLICATIONS AND AWARDS 236