TRITERPENE PRODUCTION IN
CENTELLA ASIATICA (L.) URBAN (PEGAGA)
callus and cell suspension cultures

By

ANNA LING PICK KIONG

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia, in Fulfilment of the Requirements for the
Degree of Doctor of Philosophy

January 2004
Especially dedicated to:

My parents: Joseph Ling and Teresa Lau

Brothers and Sisters: Martin, Peter, Catherine, Angela, Cecilia & Paul

Nieces and Nephews: Teresa, Anna, Grace, James, John, Emi, Henry, Stephen, Austin and Justin

To all the **Fathers** and **Sisters, my love ones** and all those who has sacrificed and supported me throughout my studies
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirements for the Degree of Doctor of Philosophy

TRITERPENE PRODUCTION IN CENTELLA ASIATICA (L.) URBAN
(PEGAGA) CALLUS AND CELL SUSPENSION CULTURES

By

ANNA LING PICK KIONG

January 2004

Chairman: Professor Maziah Mahmood, Ph.D.

Faculty: Science and Environmental Studies

Centella asiatica or locally known as ‘Pegaga’ is one of the most common
medicinal plants used by diverse ancient cultures and tribal groups. Its medicinal
values are mainly attributed to the presence of the triterpene constituents. As
there is still no information available on the triterpene production in cultured
tissues, studies were carried out in determining the triterpene distribution
particularly asiatic acid, madecassic acid, asiaticoside and madecassoside in intact
plants of the twelve accessions of C. asiatica collected throughout Malaysia as
well as in the callus and cell suspension cultures.

Results obtained from the studies revealed that twelve accessions of C. asiatica
differed both in their morphologies and their triterpene contents. The triterpenes
constituents were detected at a range of 0.134 to 1.655 mg/g dry weight in the
whole plant intact tissues. Triterpenes were also successfully detected in the callus
(0.014 to 0.773 mg/g dry weight) and cell suspension cultures (0.005 to 0.084
mg/g dry weight), the amount that were lower than that produced in the intact
tissues. However, manipulating the physical culture conditions, feeding of precursor, elicitation as well as amino acid addition managed to increase the triterpenes content in cultured tissues. Studies on the effects of the medium composition show that full strength of the basal Murashige and Skoog medium supplemented with B5 vitamins and sucrose (3-4%) increased the triterpenes content in both callus and cell suspension cultures. An interaction of auxin-cytokinin has observed being important for both callus and cell suspension cultures in enhancing triterpenes production. Higher triterpenes content was obtained in callus treated with 2,4-D and kinetin while the combination of kinetin and dicamba enhanced the triterpenes production in cell suspension cultures. The precursor-feeding studies revealed that lower concentrations of squalene (0.16 mg/L in callus and 0.8 mg/L in cells) were preferred for triterpenes production. Squalene at 0.16 mg/L had successfully triggered the production of madecassoside, asiaticoside and madecassic acid in callus cultures while asiatic acid and madecassic acid content was increased in cells treated with 0.8 mg/L squalene. The elicitor studies exhibited that the different elicitors showed distinctive effects on triterpenes production. Nevertheless, supplementation of succinic acid at 3 and 4 mg/L was found the best in increasing the triterpenes production in callus and cell suspension cultures, respectively. Addition of amino acid into the culture media was also found to promote the triterpenes production in \textit{in vitro} cultures. The study further concluded that the combinations of the optimized factors namely medium composition, precursor feeding, elicitation and amino acid addition is a very useful strategy in enhancing the triterpenes
production particularly the asiatic acid and madecassic acid in *in vitro* cultures of
C. asiatica.
PENGHASILAN TRITERPENA DALAM KULTUR KALUS DAN SEL AMPAIAN CENTELLA ASIATICA (L.) URBAN (PEGAGA)

Oleh

ANNA LING PICK KIONG

Januari 2004

Pengerusi : Profesor Maziah Mahmood, Ph.D.

Fakulti : Sains dan Pengajian Alam Sekitar

Centella asiatica atau dikenali sebagai pegaga oleh masyarakat tempatan adalah antara tumbuhan ubatan yang biasa digunakan oleh pelbagai suku kaum. Nilai perubatannya adalah disebabkan oleh kehadiran unsur-unsur triterpena. Memandangkan masih tidak terdapat informasi tentang penghasilan triterpena dalam tisu yang dikulturkan, kajian ini dijalankan untuk mengenalpasti taburan triterpena terutamanya asid asiatik, asid medikasik, asiaticosida dan medikasosida dalam 12 aksesi pokok induk C. asiatica yang telah dikumpul dari seluruh Malaysia serta dalam kultur kalus dan sel ampaian.

Keputusan yang diperolehi dalam kajian ini mendedahkan bahawa 12 aksesi C. asiatica adalah berbeza dari segi morfologi dan kandungan triterpena. Unsur triterpena telah dikesan pada julat di antara 0.134 ke 1.655 mg/g berat kering dalam keseluruhan pokok induk. Triterpena juga berjaya telah dikesan di dalam kultur kalus (0.014 ke 0.773 mg/g berat kering) dan sel ampaian (0.005 ke 0.084 mg/g berat kering) di mana kuantiti ini adalah lebih rendah daripada pokok induk.
Namum begitu, dengan memanipulasi keadaan pengkulturan fizikal, pembekalan prekursor, penggunaan elisitor serta penambahan asid amino telah berupaya meningkatkan kandungan triterpena dalam kultur tisu. Kajian tentang kesan komposisi media menunjukkan media basal Murashige dan Skoog yang telah dibekalkan dengan vitamin B5 dan sukrosa (3-4%) dapat meningkatkan kandungan triterpena dalam kedua-dua kultur kalus dan sel ampaian. Interaksi auksin-sitokinin diperhatikan amat penting dalam meninggikan penghasilan triterpena dalam kedua-dua jenis kultur. Kandungan triterpena yang lebih tinggi diperolehi dalam kalus yang telah dirawat dengan 2,4-D dan kinetin manakala kombinasi kinetin dan dicamba membawa kepada penghasilan triterpena yang lebih tinggi dalam kultur sel ampaian. Kajian pembekalan prekursor mendedahkan kepekatan skualen yang rendah (0.16 mg/L dalam kalus dan 0.8 mg/L dalam sel) cenderung dalam penghasilan triterpena. Skualen pada 0.16 mg/L berjaya mengaruh penghasilan medikasosida, asiatikosida dan asid mekasik dalam kultur kalus manakala kandungan asid asiatic dipertingkatkan dalam sel yang dirawat dengan 0.8 mg/L skualen. Kajian elisitor menunjukkan elisitor yang berbeza memberikan kesan yang jelas dalam penghasilan triterpena. Namun begitu, pembekalan asid suksinik masing-masing pada kepekatan 3 dan 4 mg/L adalah terbaik dalam meningkatkan penghasilan triterpena dalam kultur kalus dan sel ampaian. Penambahan asid amino ke dalam media pengkulturan juga didapati menggalakkan penghasilan triterpena dalam kultur in vitro. Kajian ini seterusnya menyimpulkan bahawa kombinasi faktor optimum iaitu komposisi media, pembekalan prekursor, penggunaan elisitor dan penambahan asid amino.
merupakan strategi yang amat berguna dalam meninggikan penghasilan triterpena terutamanya asid asiatik dan asis medikasik dalam kultur in vitro C. asiatica.
ACKNOWLEDGMENTS

Praise and thank the Almighty God for His willingness that made the completion of this study possible.

Thank the good opportunity that was granted by Prof. Dr. Maziah Mahmood for studying at the University Putra Malaysia. The guidance, advice, suggestions and assistance of Prof. Dr. Marziah as well as Associate Prof. Dr. Siti Khalijah and Dr. Nor’aini Mohd Fadzillah, who served as the committee members had enabled me to come out with this thesis.

I would like to thank all the members of my family, dad, mum, Martin and family, Peter and family, Cat, Angela and family, Cecilia and family and Paul for their support both morally and financially, encouragement and sacrifices throughout the course of my stay away from home.

The appreciation and gratitude are also extended to the Malaysia government and Universiti Putra Malaysia for supporting the MMBPP project as well as offering me the Graduate Research Assistantship.

Special thanks should also go to my brother, Associate Professor Dr. Hoe I. Ling at Columbia University, NY, USA, and my sister, Catherine, for reading the draft and offered numerous suggestions leading to the improvement of this thesis. This
thesis could not have been accomplished without my brother, who has always been very generous in letting me access to the publications available at Columbia University besides spending his valuable time in getting all the related publications.

The visit of the scientists from Massachusetts Institute Technology, USA to Malaysia during the workshops and symposia, with their ideas, led to an improvement of this research work. Beside the work included in this thesis, I have a chance to gain better understanding in other fields of the biotechnology. Thanks!

I cannot leave this page without expressing my appreciation to Madam Indu Bala, Mr. Thiyagu and Vellu from MARDI for being so kind and helpful in providing me with the experimental plants as well as some useful information.

Lastly, thanks to all the postgraduate students, the research assistants in the Plant Biotechnology Laboratory and my friends, Dato’, Sook Mun, Norhayati and Rozita for their cooperation, patience and support. Not forgetting, to ATAN, thanks for being my source of inspiration and I am grateful to all the care, encouragement and support.
I certify that an Examination Committee met on 19th January 2004 to conduct the final examination of Anna Ling Pick Kiong on her Doctor of Philosophy thesis entitled ‘Triterpene production in *Centella asiatica* (L.) Urban (Pegaga) callus and cell suspension cultures’ in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Dr. Mohd Arif Syed, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Dr. Radzali Muse, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Dr. Mohd Puad Abdullah, Ph.D.
Lecturer
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Normah Mohd Noor, Ph.D.
Professor
School of Bioscience and Biotechnology
Faculty of Science and Technology
Universiti Kebangsaan Malaysia,
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

xi
This thesis submitted to the Senate of University Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Maziah Mahmood, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Siti Khalijah Daud, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Nor’aini Mohd Fadzillah, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ANNA LING PICK KIONG
Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>LIST OF PLATES</td>
<td>xlii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xliii</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Herbal Industry in Malaysia</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.2 Secondary Metabolites Production in Plant Cell Cultures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.3 Plant Materials</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.4 Objectives of Research</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.1 Centella asiatica (L.) Urban</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Morphological Description</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Chemical Constituent</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Therapeutic Applications</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.1.4 Cosmetic application</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.1.5 Other Applications</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.2 Triterpenes</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Triterpenes in Centella asiatica</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Pharmacological application of triterpenes</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Triterpenes biosynthesis pathway</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2.3 Plant cell cultures</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Callus cultures</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Cell suspension cultures</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.4 Plant Cell Cultures as A Source of Secondary Metabolite</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.5 Variations of Secondary Metabolite Profiles Between In Vitro Cultures and Whole Plant</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2.5.1 Lack of differentiation and organization</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Cell culture-induced variation</td>
<td>41</td>
</tr>
</tbody>
</table>
2.6 Yield improvement strategies
 2.6.1 Screening and selection of highly productive cell lines
 2.6.2 Medium manipulations
 2.6.3 Precursors feeding
 2.6.4 Elicitation
 2.6.5 Amino acids addition

3 DIFFERENTIATION OF TWELVE ACCESSIONS OF *CENTELLA ASIATICA* BY MORPHOLOGICAL CHARACTERISTICS AND BIOCHEMICAL PROFILES

3.1 Introduction
3.2 Materials and Methods
 3.2.1 Plant materials
 3.2.2 Identification of morphological characteristics
 3.2.3 Determination of triterpenes content
 3.2.4 Total Soluble Protein
 3.2.5 Chlorophyll content
 3.2.6 Statistical analysis
3.3 Results and Discussions
 3.3.1 Identification of morphological characteristics
 3.3.2 Determination of triterpenes content
 3.3.3 Total soluble protein content
 3.3.4 Chlorophyll content
 3.3.5 Dendogram
3.4 Conclusions

4 CALLUS INDUCTION, ESTABLISHMENT OF CELL SUSPENSION CULTURES AND TRITERPENES DISTRIBUTION IN IN VITRO CULTURES

4.1 Introduction
4.2 Materials and methods
 4.2.1 Plant materials
 4.2.2 Initiation of callus
 4.2.3 Initiation of treatments
 4.2.4 Growth curve of the callus culture
 4.2.5 Establishment of cell suspension culture
 4.2.6 *In vitro* shoot culture
 4.2.7 Analysis of triterpenes content
 4.2.8 Statistical analysis
4.3 Results and Discussions
 4.3.1 Callus induction
 4.3.2 Growth curve of callus culture
 4.3.3 Growth and triterpenes content in leaf derived callus of twelve accessions
4.3.4 Triterpenes distribution in callus derived from different explants of accession CA01
4.3.5 Triterpenes production profile in callus culture
4.3.6 Establishment of cell suspension cultures
4.3.7 Growth curve of cell suspension culture
4.3.8 Triterpenes content in cell suspension culture
4.3.9 Comparison between triterpenes content in intact plant and *in vitro* cultures of *C. asiatica* accession CA01

4.4 Conclusions

5 EFFECTS OF DIFFERENT CULTURE CONDITIONS ON THE BIOMASS AND TRITERPENES PRODUCTION IN *IN VITRO* CULTURES

5.1 Introduction
5.2 Materials and Methods
 5.2.1 Initiation of treatments
 5.2.2 Culture conditions studied
 5.2.3 Extraction and HPLC analysis
5.3 Results and Discussions
 5.3.1 Callus cultures
 5.3.2 Cell suspension cultures
5.4 Conclusions

6 EFFECTS OF TRITERPENES PRECURSORS FEEDING ON THE BIOMASS AND TRITERPENES PRODUCTION IN *IN VITRO* CULTURES

6.1 Introduction
6.2 Materials and Methods
 6.2.1 *In vitro* cultures and culture conditions
 6.2.2 Preparation of triterpenes precursors
 6.2.3 Extraction and analysis
6.3 Results and Discussions
 6.3.1 Callus culture
 6.3.2 Cell suspension culture
6.4 Conclusions

7 EFFECTS OF DIFFERENT ELICITORS ON THE BIOMASS AND TRITERPENES PRODUCTION IN *IN VITRO* CULTURES

7.1 Introduction
7.2 Materials and Methods
 7.2.1 *In vitro* cultures and culture conditions
 7.2.2 Preparation of elicitors
 7.2.3 Extraction and analysis
7.3 Results and Discussions 245
 7.3.1 Callus cultures 245
 7.3.2 Cell suspension cultures 271
7.4 Conclusions 297

8 EFFECTS OF DIFFERENT AMINO ACIDS ON THE BIOMASS AND TRITERPENES PRODUCTION IN IN VITRO CULTURES 299

8.1 Introduction 299
8.2 Materials and Methods 300
 8.2.1 In vitro cultures and culture conditions 300
 8.2.2 Preparation of amino acids 301
 8.2.3 Extraction and analysis 301
8.3 Results and Discussions 302
 8.3.1 Callus culture 302
 8.3.2 Cell suspension culture 314
8.4 Conclusions 324

9 EFFECTS OF OPTIMIZED CULTURE CONDITIONS, PRECURSOR, ELICITORS AND AMINO ACID IN COMBINATION ON THE TRITERPENES PRODUCTION IN IN VITRO CULTURES 326

9.1 Introduction 326
9.2 Materials and Methods 327
 9.2.1 In vitro cultures and culture conditions 327
 9.2.2 Preparation of precursor, elicitor and amino acid 328
 9.2.3 Extraction and analysis 328
9.3 Results and Discussions 328
 9.3.1 Callus cultures 328
 9.3.2 Cell suspension cultures 335
9.4 Conclusions 341

SUMMARY, GENERAL DISCUSSIONS AND CONCLUSION 343

REFERENCES 351
APPENDICES 383
BIODATA OF THE AUTHOR 389