EFFECTS OF ROASTED SOY NUT AND TEXTURED SOY PROTEIN ON THE FEATURES OF METABOLIC SYNDROME AMONG ELDERLY WOMEN IN BABOL, IRAN

AFSANEH BAKHTIARY

IG 2012 2
EFFECTS OF ROASTED SOY NUT AND TEXTURED SOY PROTEIN ON THE FEATURES OF METABOLIC SYNDROME AMONG ELDERLY WOMEN IN BABOL, IRAN

By

AFSANEH BAKHTIARY

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

May 2012
DEDICATION

To the most glorious word in my word
“Father and Mother”
Abstract of thesis to be presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

EFFECTS OF ROASTED SOY-NUT AND TEXTURED SOY PROTEIN ON THE FEATURES OF METABOLIC SYNDROME AMONG ELDERLY WOMEN IN BABOL, IRAN

By

AFSANEH BAKHTIARY

May 2012

Chairman: Zaitun, Yassin, PhD
Institute: Institute of Gerontology

Metabolic syndrome (MetS) consists of a constellation of factors that raise the risk for cardiovascular diseases (CVD) especially in elderly women. Owing to the complex pathophysiology and phenotypic expressions of MetS, diet is crucial as it is able to positively and simultaneously influence almost all components of the syndrome. As a plant-derived estrogen, soy can be useful in preventing CVD. Thus, this study was undertaken to determine the effects of roasted soy-nut and textured soy protein (TSP) on anthropometric measurements, blood pressure (BP), lipid profile and markers of glucose intolerance, as well as inflammatory and oxidative stress of elderly women aged 60-70 years with MetS in Babol, Iran.

This study involved a 12-week Randomized Clinical Trial (RCT). A total of 75 elderly women with MetS, who met the selection criteria, were randomized into three groups, namely, roasted soy-nut (n=25), TSP (n=25) and control (n=25) groups. During the intervention period, the treatment groups consumed 35gm of roasted soy-nut or TSP on
a daily basis. All the participants completed the entire study. Both the roasted soy-nut and TSP were well tolerated. Meanwhile, only five participants complained of feeling bloated when they consumed TSP.

Anthropometric measurements, which included weight, Body Mass Index (BMI), Waist Circumference (WC), Hip Circumference (HC), Triceps Skin Fold (TSF) thickness, Blood Pressure (BP), physical activity level and dietary intake, were measured at baseline and also every month during the intervention period. The metabolic biomarkers, which included lipid profiles [Triglyceride (TG), Total Cholesterol (TC), High Density Lipoprotein Cholesterol (HDL-C), Low Density Lipoprotein Cholesterol (LDL-C), Very Low Density Lipoprotein Cholesterol (VLDL-C)], Apolipoprotein Al (Apo AI), Apolipoprotein B100 (Apo B100), glucose intolerance markers [Fasting Blood Glucose (FBG), fasting insulin, HOMA-IR, TG/HDL-C], inflammatory and prothrombotic markers [C-Reactive Protein (CRP), fibrinogen], oxidative stress markers [Malondialdehyde (MDA), Total Antioxidant Capacity (TAC)] and serum isoflavone daidzein, were measured at baseline and also at the end of the study. In addition, demographic information was collected at baseline through a face-to-face interview.

There were no significant differences in the demographic characteristics, anthropometric measurements, BP and metabolic biomarkers of the participants at baseline. Due to the inclusion of 35-gm/day roasted soy-nut, the value of TSF increased significantly compared to the control group. Other anthropometric variables showed no significant changes in the treatment and control groups.
After intervention, the roasted soy-nut showed significantly improved LDL-C, VLDL-C and Apo B100 \((p<0.05)\), while those on TSP showed slight significant improvement, compared to the mean changes from the baseline \((p<0.001)\). Similar result was found for Apo AI in both groups \((p<0.01)\). In other words, the value of the change for AI in the treatment groups was significantly greater than that of the control group. Meanwhile, serum TC was significantly decreased in the treatment groups as compared with the control group \((p<0.001)\).

Similarly, the consumption of the roasted soy-nut significantly improved FBG, insulin and HOMA-IR after the intervention \((p<0.05)\), while the consumption of TSP showed a significant decrease only in serum insulin as compared to that of the control group \((p<0.05)\). There were also significant differences in the mean changes of FBG, insulin, HOMA-IR and TG/HDL-C ratio in the treatment groups compared to the control group \((p<0.001)\). The results also revealed that after consuming roasted soy-nut and TSP, the value of MDA was significantly lower, whereas more TAC was detected in the roasted soy-nut \((p<0.001)\) and the TSP \((p<0.01)\) groups compared to those of the control group.

The comparison of the two treatment groups showed that the mean changes for FBG, insulin and HOMA-IR levels in the roasted soy-nut group were significantly higher than that of the TSP group \((p<0.01)\), while the differences between the two groups were not significant for the lipid profiles and oxidative stress markers. Similarly, the differences in TG, HDL-C, fibrinogen, CRP and BP compared to the control group were also not significant.

In conclusion, short-term intakes of roasted soy-nut and TSP have shown to improve
the lipid profiles, markers of glucose intolerance and oxidative stress, although the roasted soy-nut contributed more effective than the TSP. Therefore, a moderate daily intake of roasted soy-nut as snacks or TSP as a meal complement may be a safe and a practical modality to reduce or prevent MetS complications among high risk individuals, especially elderly women.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doctor Falsafah

KESAN SOYA PANGGANG DAN PROTEIN SOYA BERTEKSTUR TERHADAP SINDROM METABOLIK DALAM KALANGAN WANITA DI BABOL, IRAN

Oleh

AFSANEH BAKHTIARY

Mei 2012

Pengerusi: Zaitun Yassin, PhD

Institusi: Institut Gerontologi

Sindrome metabolik (MetS) terdiri daripada sekumpulan faktor yang meningkatkan risiko penyakit kardiovaskular (CVD) terutamanya dalam kalangan wanita warga tua. Disebabkan oleh patofisiologi dan ekspresi fenotip MetS yang kompleks, diet adalah penting kerana ia mampu mempengaruhi secara positif dan dalam masa yang sama hampir semua komponen sindrom. Sebagai estrogen terbitan-tumbuhan, soya adalah berguna dalam pencegahan penyakit kardiovaskular. Oleh itu, Kajian ini telah dijalankan untuk menentukan kesan soya panggang kacang soya dan protein soya bertekstur (TSP) pada ukuran antropometri, tekanan darah (BP), profil lipid dan penanda intoleransi glukosa, serta radang dan tekanan oksidatif wanita warga tua berumur 60-70 tahun yang mengalami MetS di Babol, Iran.

Kajian ini melibatkan Percubaan Klinikal Rambang (RCT) selama 12 minggu. Sejumlah 75 wanita warga tua yang mengalami MetS, yang memenuhi kriteria pemilihan, diagih secara rawak kepada tiga kategori, iaitu, kumpulan kacang soya
panggang (n=25), TSP (n=25) dan kawalan (n=25). Dalam tempoh intervensi, kumpulan rawatan mengambil 35 g kacang soya-panggang atau TSP pada setiap hari. Semua peserta melengkapkan kajian keseluruhan. Kedua-dua kacang soya panggang dan TSP boleh diambil tanpa masalah. Sementara itu, hanya lima peserta mengadu berasa kembung apabila mereka mengambil TSP.

Pengukuran antropometri, termasuk berat badan, Indeks Jisim Badan (BMI), Lilitan Pinggang (WC), Lilitan Pungung (HC), ketebalan Lipatan Kulit Triseps (TSF), Tekanan Darah (BP), tahap aktiviti fizikal dan pengambilan makanan, diukur pada garis dasar dan juga setiap bulan dalam tempoh intervensi. Penanda metabolik, yang termasuk profil lipid [trigliserida (TG), Jumlah Kolesterol (TC), kolesterol Lipoprotein Ketumpatan Tinggi (HDL-C), kolesterol lipoprotein Ketumpatan Randah (LDL-C), lipoprotein Kolesterol Ketumpatan Sangat Rendah (VLDL-C)], Apolipoprotein AI (Apo AI), Apolipoprotein B100 (Apo B100), penanda intoleransi glukosa [Glukosa Darah Puasa (FBG), insulin puasa, HOMA-IR, TG / HDL-C], penanda radang dan prothrombotic [C-Reaktif Protein (CRP), fibrinogen], penanda tekanan oksidatif [Malondialdehide (MDA), Kapasiti Antioksidan Jumlah (TAC)] dan serum isoflavone daidzein, diukur pada garis dasar dan juga pada akhir kajian. Di samping itu, maklumat demografi telah dikumpulkan pada garis dasar melalui temubual bersemuka.

Terdapat tiada perbezaan signifikan ciri-ciri demografi, pengukuran antropometri, BP dan penanda metabolik peserta pada garis dasar. Disebabkan oleh pengambilan 35-gm/hari kacang soya, nilai TSF dalam kumpulan rawatan meningkat dengan signifikan berbanding dengan kumpulan kawalan. Pembolehubah antropometri yang lain tidak menunjukkan sebarang perubahan signifikan dalam kumpulan rawatan dan kawalan.
Selepas intervensi, kacang soya panggang menunjukkan peningkatan yang signifikan LDL-C, VLDL-C dan Apo B100 (p <0.05), manakala mereka yang mengambil TSP menunjukkan peningkatan significance yang sederhana berbanding dengan perubahan min pada garis dasar (p <0.001). Hasil yang sama telah diperolehi untuk Apo AI dalam kedua-dua kumpulan (p <0.01). Dalam lain perkataan, nilai perubahan untuk Apo AI dalam kumpulan rawatan adalah jauh lebih besar daripada kumpulan kawalan. Sementara itu, serum TC ketara menurun dengan signifikan dalam kumpulan rawatan berbanding dengan kumpulan kawalan (p <0.001).

Begitu juga, penggunaan kacang soya panggang secara signifikan memberi kesan yang baik terhadap FBG, insulin dan HOMA-IR selepas intervensi (p<0.05), manakala penggunaan TSP menunjukkan penurunan yang signifikan hanya untuk insulin serum berbanding dengan kumpulan kawalan (p<0.05). Terdapat juga perbezaan yang signifikan dalam perubahan min FBG, insulin, HOMA-IR dan TG / nisbah HDL-C dalam kumpulan rawatan berbanding dengan kumpulan kawalan (p<0.001). Keputusan juga menunjukkan bahawa selepas pengambilan kacang soya panggang dan TSP, nilai MDA adalah jauh lebih rendah, manakala lebih TAC telah dikesan dalam kumpulan kacang soya panggang (p<0.001) dan TSP (p<0.001) dibandingkan dengan kumpulan kawalan.

Perbandingan dua kumpulan rawatan menunjukkan bahawa perubahan min bagi tahap FBG, insulin dan IR HOMA dalam kumpulan kacang soya panggang adalah jauh lebih tinggi daripada kumpulan TSP (p<0.001), manakala perbezaan di antara kedua-dua kumpulan tidak signifikan bagi profil lipid dan penanda tekanan oksidatif. Begitu juga,
perbezaan untuk TG, HDL-C, fibrinogen, CRP dan BP dibandingkan dengan kumpulan kawalan juga tidak signifikan.

Kesimpulannya, pengambilan jangka pendek kacang soya panggang dan TSP telah menunjukkan kesan yang baik untuk profil lipid, penanda intoleransi glukosa dan tekanan oksidatif, walaupun kacang soya panggang menyumbang dengan lebih berkesan daripada TSP. Oleh itu, pengambilan harian secara sederhana kacang soya panggang sebagai snek atau TSP sebagai pelengkap hidangan mungkin selamat dan cara yang praktikal untuk mengurangkan atau mencegah komplikasi sindrom metabolik dalam kalangan individu berisiko tinggi, terutama wanita warga tua.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my supreme gratitude to God who has been the pillar of my power during the inception of Ph.D. degree and the motivation for accomplishment of this research.

I would like to express my deepest gratitude to my committee chair, Associate Prof. Dr. Zaitun Bt Yassin for her excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. My biggest thanks go to her, whose positive, informed, and encouraging nature has been my inspiration as I hurdle all the obstacles in the completion this research work. I admire her sincerity and effort for contribution in this research. Without her guidance and persistent help this dissertation would not have been possible. Thank you with all my heart!

My sincere thanks also go out to my committee members: Prof. Asmah Bt Rahmat, Dr. Parichehr Hanachi and Dr. Zaiton Bt Ahmad for their tutorship, suggestions and advice during my research: their supervision directed me to a board range of underlying structures which helped me to narrow my research.

I convey special acknowledgement to Dr. Sohrab Halalkhor, Head of the Department of Biochemistry & Biophysics, Babol University of Medical Sciences for his detailed and constructive comments, and for his important support throughout this work. I am really grateful to Dr. Mahdi Pouramir whose his directions assist me to improve my knowledge about this research.
I wish to express my honest appreciation to Dr. Hajian and Dr. Shirkhani for their guidance in statistical analysis: They were very tolerant and understanding throughout the process of data analysis.

I owe everlasting gratefulness to the staff of the rural health centers of Babol University of Medical sciences, who pleasantly involved themselves in helping me undertake this dissertation including Hassan Asgharzadeh Alamdary, Maryam Noorzadeh, Sodabeh Alinejad, Asieh Mahmoudi, Kulthum Nasrollahi and Parvin Lotfnejad.

From the bottom of my heart I want to express my deepest gratitude to my loving parents, Hossein Bakhtiary and Halimeh Pourmohsen for their love, reliance and continuous prayers throughout these hard years of Ph.D. program. Without their extreme supports I would not have been able to complete.

Words fail me to express my appreciation to my husband Mohhamad Asgari Sajedi whose dedication, love and persistent confidence in me, has taken the load off my shoulder. I owe his for being unselfishly let his intelligence, passions, and ambitions collide with mine. Thanks to our son, Amirhossein, for the joy and the happiness he brings to me during our many moments together.

I would also like to say a note of thanks to all the participants for their cooperation and everybody who was important to the successful realization of thesis, as well as expressing my apology that I could not mention personally one by one.
I appreciate Max Soy Iranian Company for providing and packaging soy products used in this study.

Finally I want to thank the Babol University of Medical Sciences, which provided the permission and location for executing the research and their financial support for this project.
I certify that a Thesis Examination Committee has met on 26 June 2012 to conduct the final examination of Afsaneh Bakhtiary on her thesis entitled “Effects of Roasted soy-nut and Textured Soy Protein on the Features of Metabolic Syndrome among Elderly Women in Babol, Iran” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy. Members of the Thesis Examination Committee were as follows:

Mary Huang Soo Lee, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Rokiah bt. Mohd Yusof, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Chan Yoke Mun, PhD
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Lynne Cobiac, PhD
Professor
Flinders Clinical and Molecular Medicine,
School of Medicine,
Flinders University, 5001 Australia
(External Examiner)

SEOW HENG FONG, PhD
Professore/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Ph.D. of Gerontology. The members of the Supervisory Committee were as follows:

Zaitun Bt Yassin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Asmah Bt Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Zaiton Bt Ahmad, MD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Parichehr Hanachi, PhD
Associate Professor
Faculty of Basic Science
Alzahra University Tehran, Iran
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for my other degree at Universiti Putra Malaysia or other institutions.

AFSANEH BAKHTIARY

Date: 9th May 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

1.1 Background of the Study
1.2 Problem Statement
1.3 Significance of the Study
1.4 Objectives of the Study
1.4.1 General Objective
1.4.2 Specific Objectives
1.5 Null Hypothesis
1.6 Research Questions
1.7 Conceptual framework

2. LITERATURE REVIEW

2.1 Introduction to Metabolic Syndrome
2.2 Clinical Definition of Metabolic Syndrome
2.3 The Features of Metabolic Syndrome
2.3.1 Abdominal Obesity
2.3.2 Atherogenic Dyslipidemia
2.3.3 Elevated Blood Pressure
2.3.4 Glucose Intolerance/Insulin Resistance
2.3.5 Proinflammatory State
2.3.6 Prothrombotic State
2.3.7 Oxidative Stress State
2.4 Pathophysiology of the Metabolic Syndrome in Ageing
2.4.1 Increased Visceral Fat
2.4.2 Dyslipidemia
2.4.3 Insulin Resistance/Hyperglycemia
2.4.4 Proinflammations State
2.4.5 Prothrombotic State
2.4.6 Oxidative Stress State
2.5 Dysfunction of Endothelium in Metabolic Syndrome 40
2.6 Diet and Metabolic Syndrome 41
2.7 Composition of Soybean 43
 2.7.1 Macronutrients in Soybean 43
 2.7.2 Micronutrients in Soybean 44
2.8 Absorption and Metabolism of Isoflavones 47
2.9 Categories of soy Proteins 48
2.10 Mechanism of Soy Effects on the Metabolic Syndrome 50
 2.10.1 Soy and Obesity 50
 2.10.2 Soy and Cardiovascular Risks 52
 2.10.3 Soy and Glucose Intolerance/ Insulin Resistance 55
 2.10.4 Soy and Inflammatory Markers 56
 2.10.5 Soy and Thrombotic Marker 58
 2.10.6 Soy and Oxidative Stress Markers 59
2.12 Soy and and its Clinical Evidence 61
 2.12.1 Animal Study 61
 2.12.2 Epidemiological Study 63
 2.12.2 Interventional Study 66

3. METHODOLOGY
 3.1 Study Design 79
 3.2 Study Location 79
 3.3 Sample Size 80
 3.4 Inclusion Criteria 82
 3.5 Exclusion Criteria 82
 3.6 Recruitment and Screening 83
 3.6 Randomization 86
 3.7 Study Groups 87
 3.8 Data Collection 89
 3.8.1 Anthropometric Measurements 89
 3.8.2 Blood Pressure 94
 3.8.3 Food Records 95
 3.8.4 Assessment of Physical activity 96
 3.8.5 Blood Collection 99
 3.9 Soy Distribution 100
 3.10 Follow Up 101
 3.11 Participants’ Compliance 102
 3.12 Withdrawal 103
 3.13 Laboratory Analysis 103
 3.14 Statistical Analysis 107

4. RESULTS AND DISCUSSION
 4.1 Characteristics of the Participants 109
 4.2 Energy, Macronutrient and Dietary Fibre 112
 4.3 Physical Activity 112
 4.4 Anthropometric and Blood Pressure Measurements 112
 4.5 Lipid Profiles 117
 4.6 Glucose Intolerance Markers 119
 4.7 Proinflammatory and Prothrombotic Markers 122
4.8 Oxidative Stress Markers 124
4.9 Analysis of Covariance 126
4.10 Serum Isoflavone Level 127
4.11 Discussion 129
 4.11.1 Nutrient Intake 129
 4.11.2 Physical Activity Level 130
 4.11.3 Effects of Soy Consumption on Anthropometric Measurement 132
 4.11.4 Effects of Soy Consumption on Blood Pressure 133
 4.11.5 Effects of Soy Consumption on Lipid Profile 135
 4.11.6 Effects of Soy Consumption on Glucose Intolerance Markers 139
 4.11.7 Effects of Soy Consumption on CRP 144
 4.11.8 Effects of Soy Consumption on Fibrinogen 146
 4.11.9 Effects of Soy Consumption on Oxidative Stress Markers 147
 4.11.10 Study Strengths 150
 4.11.11 Study Limitation 153

5. CONCLUSION AND RECOMMENDATIONS
 5.1 Conclusion 155
 5.2 Recommendation 156

REFERENCES 159
APPENDICES
A: Approval Sheet from Ethic Committee UPM 186
B: Approval Sheet from Babol University, Iran 187
C: Approval Sheet of the Proposal for the Project from Babol University, Iran 188
D: Study Recruitment Poster 189
E: Screening Questionnaire 190
F: Information Sheet 193
G: Consent Form 197
H: Demographic Questionnaire 199
I: Three-day Dietary Intake Questionnaire 202
J: Physical Activity Questionnaire 210
K: Measurement Sheet 219

BIODATA OF STUDENT 221
LIST OF PUBLICATIONS 223