MICROWAVE ASSISTED SYNTHESIS AND PHOTOCATALYTIC ACTIVITY OF ZNS AND CDS QUANTUM DOT SYSTEMS

NAYEREH SOLTANI

FS 2012 64
MICROWAVE ASSISTED SYNTHESIS AND PHOTOCATALYTIC ACTIVITY OF ZNS AND CDS QUANTUM DOT SYSTEMS

NAYEREH SOLTANI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2012
MICROWAVE ASSISTED SYNTHESIS AND PHOTOCATALYTIC ACTIVITY OF ZNS AND CDS QUANTUM DOT SYSTEMS

By

NAYEREH SOLTANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

November 2012
DEDICATION

In appreciation of their love, sacrifices, faith, and eternal goodness

I would like to dedicate my thesis to my dear mother, my beloved husband Reza and my sweetheart daughter Sara

and

to the memory of my late father
Solar energy is an alternative sustainable energy resource that can be harvested using semiconductor quantum dots including zinc sulfide (ZnS) and cadmium sulfide (CdS). However, at present is only a small fraction of the sun’s energy (< 10%) absorbed by using pure ZnS and CdS semiconductor solar cells. To increase the overall photoactivity of these nanomaterials, various selective surface modifications can be used during synthesis process such as depositing the surface with organic or inorganic materials that causes charge transfer and electronic interaction between the surface attachment and the host semiconductor.

In this work, pure ZnS and CdS quantum dots, PVP capped ZnS and CdS quantum dots, and ZnS/CdS and CdS/ZnS core shells were prepared by using the microwave irradiation technique involving water and polyol solvents. Pure ZnS and CdS semiconductor quantum dots were synthesized by both the Microwave-Hydrothermal (M-H) and Microwave-Polyol (M-P) methods, polymer-capped ZnS and CdS by the
M-H method, and ZnS/CdS and CdS/ZnS core shells by the M-P method. The concentration of precursors was adjusted by varying the molar ratio of zinc and cadmium sources to sulfur source (1:1, 1:1.25, 1:1.5, and 1:2) in a fixed irradiation time (20 min). To study the effect of microwave irradiation, the reactions were carried out in 5, 10, 15, 20, 25, 30 and 40 min irradiation time using a pulse regime of 20% power (on for 5 s, off for 20 s). The formation of ZnS and CdS nanoparticles have been observed by the change in color of samples from colorless to white for ZnS nanoparticles and to yellow for CdS nanoparticles and confirmed by powder X-ray diffraction (XRD).

The crystal structure of ZnS and CdS nanocrystals synthesized in both the M-H and M-P method are cubic and hexagonal, respectively. The particle size of nanocrystals was determined using Scherrer’s equation from XRD spectra and transmission electron microscopy (TEM). The estimated average sizes in the M-H method are between 3.3 and 4.8 nm for ZnS and between 9.7 and 12.5 nm for CdS nanoparticles depending on the irradiation time. In the M-P method, the average sizes are between 3.2 and 4.9 nm for ZnS and between 8.9 and 11.4 nm for CdS. The size of nanoparticles was also calculated by the Brus formula according to the UV-Visible spectrum which agrees fairly well with those determined from the XRD spectra and TEM images.

The optical band gap of ZnS and CdS nanoparticles was calculated from Tauc plot using UV-Visible spectra. The estimated band gaps of the M-H method samples are between 4.24 and 4.30 eV for ZnS and between 2.61 and 2.66 eV for CdS nanoparticles. For the M-P method, the optical band gaps are between 4.00 and 4.42
eV for ZnS, and between 2.62 and 2.67 eV for CdS. The blue shift of the absorption edge compared to that of bulk clearly explained the quantum confinement effect. Photoluminescence spectra of the samples all exhibited two individual peaks corresponding to zinc or cadmium vacancies and sulfur vacancies.

The size of PVP-capped ZnS and CdS nanoparticles slightly increased compared to the bare ones. Consequently the absorption peaks shifted to higher wavelengths. The average particle sizes and estimated optical band gaps of synthesized nanoparticles in appropriate PVP concentration (5%) were 5.1 nm and 4.07 eV for ZnS and 18.3 nm and 2.53 eV for CdS. PL spectra of PVP-capped ZnS nanoparticles de-convoluted into three different bands which were attributed to zinc and sulfur vacancies, and surface trap states. PL spectra of PVP-capped CdS showed two green emission peaks related to cadmium and sulfur vacancies.

The XRD spectra of ZnS/CdS and CdS/ZnS core shell nanoparticles were similar to the XRD pattern of the core materials. The estimated average sizes of ZnS/CdS core shell nanoparticles were 11.2 and 14.6 nm corresponding to shell thickness of 3.4 and 5.1 nm, respectively. For CdS/ZnS core shell nanoparticles the average particle sizes were 17.0 and 20.7 nm corresponding to shell thickness of 3.4 and 5.3 nm. The optical properties of ZnS/CdS and CdS/ZnS core shell nanoparticles in the visible region are dominated by CdS since its band gap is smaller than that of ZnS and both the conduction band and the valence band of CdS are located within the energy gap of ZnS. PL spectra of core shell nanoparticles de-convoluted into four different bands that could be attributed to zinc, cadmium and sulfur vacancies, and the radiative recombination of carriers at interfaces.
The photocatalytic activity of the prepared nanoparticles was examined using dye degradation and water splitting for hydrogen production under illumination by a halogen lamp as a visible light source. To obtain the best condition of photocatalytic activity, samples were categorized in three groups. In the first group, pure ZnS and CdS nanoparticles were mixed together with ZnS:CdS weight ratios of (1:0), (0:1), (1:2), (2:1), (1:3), (3:1), (1:4) and (4:1). In the second group, PVP capped ZnS and CdS were mixed together with the same weight ratios of the first group and in the third one, photocatalytic activity of ZnS/CdS and CdS/ZnS core shells were examined. The results show that photocatalytic activity of samples in the first and second groups depends on the weight ratio of mixture. Using a typical 0.2 mg weight of photocatalyst quantum dots, the highest photocatalytic dye degradation rate after 120 min illumination in the three groups were 4.82×10^{-3}, 9.15×10^{-3} and 7.56×10^{-3} min$^{-1}$, respectively. In the water splitting reaction the maximum amount of hydrogen evolution after 6 hours in the three groups were 629, 736 and 1560 μmol respectively.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SINTESIS BANTUAN MIKROGELOMBANG DAN AKTIVITI FOTOPEMANGKINAN ZNS DAN CDS BINTIK KUANTUM SYSTEMS

Oleh

NAYEREH SOLTANI

November 2012

Pengerusi: Profesor Elias Saion, PhD

Fakulti: Sains

Tenaga suria adalah sumber tenaga alternatif yang mampan yang boleh dituai menggunakan semikonduktor bintik kuantum termasuk zink sulfida (ZnS) dan kadmium sulfida (CdS). Walau bagaimanapun, pada masa ini hanya pecahan kecil daripada tenaga suria (<10%) diserap dengan menggunakan sel solar semikonduktor ZnS dan CdS tulen. Untuk meningkatkan fotoaktif keseluruhan bahan-bahan nano ini, pelbagai jenis pengubahsuaian permukaan terpilih boleh digunakan semasa proses sintesis seperti mendepositkan permukaan dengan bahan organik dan bukan organik untuk pemindahan caj dan tindak balas elektronik diantara lampiran permukaan dan semikonduktor tuan rumah.

Struktur kristal nanokristal ZnS dan CdS yang telah disintesis dalam kedua-dua kaedah M-H dan M-P adalah masing-masing berbentuk kubik dan heksagon. Saiz zarah untuk nanokristal telah ditentukan melalui persamaan Scherrer daripada spektrum XRD dan mikroskopi transmisi elektron (TEM). Anggaran purata saiz dalam kaedah M-H adalah di antara 3.3 dan 4.8 nm untuk nanozarah ZnS dan di antara 9.7 dan 12.5 nm untuk nanozarah CdS bergantung kepada masa sinaran. Dalam kaedah M-P, saiz purata adalah di antara 3.2 dan 4.9 nm untuk nanozarah ZnS dan di antara 8.9 dan 11.4 nm untuk nanozarah CdS. Saiz nanozarah telah dikira dengan menggunakan formula Brus berdasarkan kepada spektrum UV-tampak dimana secara langsung adalah setuju dengan yang ditentukan daripada spektrum XRD dan imej TEM. Jurang jalur optikal untuk nanozarah ZnS dan CdS telah dikira daripada plot Tauc menggunakan spektrum UV-tampak. Anggaran jurang jalur
melalui kaedah M-H adalah di antara 4.24 dan 4.30 eV untuk nanozarah ZnS dan di antara 2.61 dan 2.66 eV untuk nanozarah CdS. Dalam kaedah M-P, jurang jalur optikal adalah di antara 4.00 dan 4.42 eV untuk nanozarah ZnS dan di antara 2.62 dan 2.67 eV untuk nanozarah CdS. Peralihan biru pinggir penyerapan berbanding pukul telah dijelaskan melalui kesan pengurungan kuantum. Spektrum fotoluminesens (PL) sampel mempamerkan dua puncak berbeza yang sepadan dengan kekosongan zink atau kadmium dan kekosongan sulfur.

Saiz nanozarah ZnS dan CdS bersalut PVP telah meningkat sedikit berbanding dengan yang tulen. Dengan itu, puncak penyerapan beralih kepada ke arah panjang gelombang yang lebih tinggi. Purata saiz zarah dan anggaran jurang jalur optik untuk nanozarah yang disintesiskan dengan kepekatan yang sesuai PVP (5%) masing-masing adalah 5.1 nm dan 4.07 eV untuk nanozarah ZnS dan 18.3 nm dan 2.53 eV untuk nanozarah CdS. Spektrum PL untuk nanozarah ZnS bersalut PVP dikonvolusi kepada tiga puncak yang berbeza disebabkan oleh kekosongan zink dan sulfur, dan keadaan perangkap permukaan. Spektrum PL untuk nanozarah CdS bersalut PVP menunjukkan dua pemancaran puncak sinaran hijau yang berkaitan dengan kekosongan kadmium dan sulfur.

Dua sampel disediakan setiap nanozarah tempurung teras ZnS/CdS dan CdS/ZnS yang didapati mempunyai corak XRD yang sama seperti bahan teras. Purata saiz anggaran untuk nanozarah tempurung teras ZnS/CdS adalah 11.2 dan 14.6 nm dengan ketebalan masing-masing 3.4 dan 5.1 nm. Untuk nanozarah tempurung teras CdS/ZnS anggaran purata saiz partikel adalah 17.0 dan 20.7 nm dengan ketebalan masing-masing 3.4 dan 5.3 nm. Sifat-sifat optik nanozarah tempurung teras ZnS/CdS
dan CdS/ZnS dalam rantau cahaya tampak didominasi oleh CdS kerana jurang jalurnya lebih kecil berbanding ZnS dan kedua-dua jalur konduksi dan jalur valens CdS adalah berada dalam lingkungan jurang tenaga ZnS. Spektrum PL untuk nanozarah tempurung teras dikonvolusi kepada empat puncak berbeza yang mungkin disebabkan oleh kekosongan zink, kadmium dan sulfur, dan rekombinasi pengangkut sinaran di antaramuka.

Aktiviti fotopemangkinan untuk nanozarah yang disediakan telah diselidik menggunakan penurunan pewarna dan pemecah air untuk penghasilan hidrogen dibawah pencahayaan lampu halogen sebagai sumber cahaya tampak. Untuk mendapatkan keadaan terbaik aktiviti fotopemangkinan, sampel telah dikategorikan kepada tiga kumpulan. Dalam kumpulan pertama nanozarah tulen ZnS dan CdS di campur bersama dengan dengan nisbah berat ZnS: CdS (1:0), (0:1), (1:2), (2:1), (1:3), (3:1), (1:4) dan (4:1). Dalam kumpulan kedua, ZnS dan CdS bersalut PVP di campur bersama dengan nisbah berat yang sama seperti kumpulan pertama dan dalam kumpulan ketiga, aktiviti fotopemangkinan untuk tempurung teras ZnS/CdS dan CdS/ZnS telah diselidik. Keputusan menunjukkan bahawa aktiviti fotopemangkinan sampel daripada kumpulan pertama dan kedua adalah bergantung kepada nisbah berat daripada campuran tersebut. Sebagai contoh bagi 0.2 mg berat bintik kuantum fotopemangkin yang digunakan kadar tertinggi untuk penurunan pewarna fotopemangkinan selepas 120 minit pencahayaan dalam tiga kumpulan masing-masing adalah 4.82×10^{-3}, 9.15×10^{-3} dan 7.56×10^{-3} min$^{-1}$. Untuk tindak balas pemecah air untuk penghasilan hydrogen, jumlah tertinggi penghasilan hidrogen selepas 6 jam dalam ketiga-tiga kumpulan masing-masing adalah 629, 736 dan 1560 μmol.
ACKNOWLEDGEMENTS

In awareness that this work could not be accomplished without the God willing, hereby "Praise be to God, the Lord of the World."

Then, it is pleasure to give my deepest gratitude to Prof. Elias Saion, my research advisor, for all of his assistance, ideas, supervision, and encouragements throughout my scientific research. It has been a privilege to learn from his knowledge, ideas and wisdom. While always ready to give an advice, he tried to cultivate the independence and original thinking, and I truly believe those qualities will serve me well in the future.

Furthermore, I wish to thank my committee: Prof. Mohd Zobir Hussein and Prof. Robiah Bt. Yunus for their suggestions and support throughout my graduate career. I greatly appreciate and wish to thank Mr. Mohd ZainYusof for his immense help and staff of the Faculty of Science and the Bioscience Institute of University Putra Malaysia, who had contributed to this work.

Special thanks to my great friends, Khadijeh who gave me the idea to come to Malaysia and Maryam who had a hand in making work seem less like a job and more like a hobby and for the interesting scientific discussions and help during my research and Parisa for initial training on spectroscopy instruments and XRD software and kind assistance. I also owe my thanks to my friends Ghazaleh, Afarin, Sharifeh, Manizeh, Fatemeh, Mojdeh, Elham, Alam, Sepideh and Nasrin for their love and encouragement which keep me going and wish you all the best in your life.

There is a very important person that without him, his care and love I wouldn't achieve all I have had achieved. I am forever indebted to my husband, Reza, for
helping me achieve my goal. I also want to acknowledge and thank the people whose live was most affected by this work, my sweetheart daughter Sara.

I wish to express my gratitude to my mother and my late father for their endless love, immense patient and diligence support. Words cannot explain my love and gratitude to them.

I am highly grateful to my brothers, my sisters, my nephews, my parents in law, my sisters in law and my brothers in law for their encouragement and love from thousands of miles away. I owe you all more than just my thanks. May God’s graces and blessings be forever yours.
I certify that a Thesis Examination Committee has met on 2 November 2012 to conduct the final examination of Nayereh Soltani on her thesis entitled “Microwave assisted synthesis and photocatalytic activity of II-VI semiconductor quantum dots” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Jumiah Hassan, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Zulkarnain Zainal, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mansor Hashim, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Sundara Ramaprabhu, PhD
Professor
Indian Institute of Technology Madras
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Elias Saion, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd Zobir Hussein, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Robiah Bt. Yunus, PhD
Professor
Institute of Advanced Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NAYEREH SOLTANI
Date: 2 November 2012
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxxviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of study 1
1.2 Solar energy conversion via semiconductor quantum dots 3
1.3 Significant of the Study 4
1.4 Problem Statement 6
1.5 Scope of the Study 7
1.6 Study Objectives 9
1.7 Thesis Outline 10

2 LITERATURE REVIEW

2.1 Semiconductor nanomaterials 12
2.2 Synthesis methods of II-VI semiconductor nanoparticles 14
 2.2.1 Hydrothermal route 14
 2.2.2 Solvothermal technique 15
 2.2.3 Sol-gel method 18
 2.2.4 Microemulsion route 19
 2.2.5 Solid-state synthesis 22
 2.2.6 Sonochemical method 23
 2.2.7 Photochemical synthesis 26
 2.2.8 γ-irradiation method 28
 2.2.9 Microwave assisted heating 30
2.3 Overview on semiconductors nanoparticles for photocatalysis 38
 2.3.1 Semiconductor nanostructure for photocatalytic dye degradation 39
2.3.2 Semiconductor nanostructure for photocatalytic hydrogen production

3 THEORY

3.1 Energy bands of materials
3.2 Semiconductor crystals
 3.2.1 Band gap of semiconductors
 3.2.2 II-VI Semiconductors
3.3 Semiconductor nanocrystals
 3.3.1 Density of states and dimensions of materials
 3.3.2 Theory of Confinement
 3.3.3 Surface States
3.4 Surface modification of nanoparticles
 3.4.1 Organic surface modification
 3.4.2 Inorganic surface modification
3.5 Theory of Nucleation and growth
3.6 Microwave irradiation
 3.6.1 General information
 3.6.2 Interaction between microwave and materials
 3.6.3 Microwave dielectric heating
 3.6.4 Microwave non-thermal effects
 3.6.5 Microwave synthesis process
3.7 Photocatalysis and application
 3.7.1 Photocatalytic reactions
 3.7.2 Enhancement of photocatalytic activity
 3.7.3 Photochemical transformation of specific compounds
 3.7.4 Environmental applications: water and air purification
 3.7.5 Hydrogen production
 3.7.6 Other applications: self-cleaning, anti-fogging, and disinfection

4 METHODOLOGY

4.1 Introduction
4.2 Synthetic methods
 4.2.1 Materials
 4.2.2 Synthesis of pure ZnS and CdS nanoparticle quantum dots using microwave-hydrothermal method
 4.2.3 Synthesis of pure ZnS and CdS nanoparticle quantum dots using microwave-polyol method
4.2.4 Synthesis of PVP capped ZnS and CdS nanoparticle quantum dots 104
4.2.5 Synthesis of ZnS/CdS and CdS/ZnS core shell quantum dots 106

4.3 Characterization techniques 108
4.3.1 X-ray diffraction 109
4.3.2 Transmission electron microscopy 115
4.3.3 Energy Dispersive X-ray Spectrometry 117
4.3.4 UV-Visible absorption spectroscopy 118
4.3.5 Photoluminescence spectroscopy 123
4.3.6 Fourier transforms infrared spectroscopy 125

4.4 Photocatalytic activity 127
4.4.1 Dye degradation 128
4.4.2 Hydrogen production 131

5 RESULTS AND DISCUSSION 136
5.1 Introduction 136
5.2 Effect of precursors concentration on properties of ZnS and CdS nanoparticles synthesized using microwave-hydrothermal method 137
5.2.1 X-ray diffraction data 137
5.2.2 TEM images and related size distribution histogram 144
5.2.3 UV-Visible spectra 150
5.2.4 Photoluminescence spectra 156
5.2.5 Yield of reactions 161
5.3 Effect of irradiation time on properties of ZnS and CdS nanoparticles synthesized using microwave-hydrothermal method 162
5.3.1 X-ray diffraction data 163
5.3.2 TEM images and related size distribution histogram 173
5.3.3 UV-Visible spectra 182
5.3.4 Photoluminescence spectra 190
5.3.5 Yield of reactions 193
5.4 Effect of precursors concentration on properties of ZnS and CdS nanoparticles synthesized using microwave-polyol method 194
5.4.1 X-ray diffraction data 195
5.4.2 TEM images and related size distribution histogram 201
5.4.3 UV-Visible spectra 207
5.4.4 Photoluminescence spectra 213
5.4.5 Yield of reactions 216
5.5 Effect of irradiation time on properties of ZnS and CdS nanoparticles synthesized using microwave-polyol method 217
5.5.1 X-ray diffraction data 218
5.5.2 TEM images and related size distribution histogram 229
5.5.3 UV-Visible spectra 237
5.5.4 Photoluminescence spectra 244
5.5.5 Yield of reactions 247
5.6 Explanation of diversities in characteristics of ZnS and CdS nanoparticles synthesized with M-H and M-P methods 248
5.7 Formation of PVP capped ZnS and CdS nanoparticles 252
5.7.1 X-ray diffraction data 254
5.7.2 TEM images and related size distribution histogram 256
5.7.3 FTIR spectra 261
5.7.4 UV-Visible spectra 263
5.7.5 Photoluminescence spectra 267
5.8 Formation of ZnS/CdS and CdS/ZnS core shell nanoparticles 270
5.8.1 X-ray diffraction data 270
5.8.2 TEM images and related size distribution histogram 275
5.8.3 UV-Visible spectra 278
5.8.4 Photoluminescence spectra 281
5.9 Photocatalytic dye degradation 283
5.9.1 Degradation of methylene blue by ZnS and CdS nanoparticles 285
5.9.2 Degradation of methylene blue by PVP-capped ZnS and CdS nanoparticles 296
5.9.3 Degradation of methylene blue by ZnS/CdS and CdS/ZnS nanoparticle 307
5.10 Photocatalytic water splitting for hydrogen production 312
5.10.1 Hydrogen evolution using ZnS and CdS nanoparticles 312
5.10.2 Hydrogen evolution using PVP capped ZnS and CdS nanoparticles 314
5.10.3 Hydrogen evolution using ZnS/CdS and CdS/ZnS core shell nanoparticles 315

6 CONCLUSIONS 319
6.1 Conclusions 319
6.2 Future work and recommendations 323

REFERENCES 325
BIODATA OF STUDENT 346
LIST OF PUBLICATIONS 347