

UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION OF ENZYMATIC PRODUCTION OF FATTY HYDRAZIDES AND THEIR APPLICATION AS POLYURETHANE CHAIN EXTENDER

TUAN NOOR MAZNEE BINTI TUAN ISMAIL

FS 2012 57

OPTIMIZATION OF ENZYMATIC PRODUCTION OF FATTY HYDRAZIDES AND THEIR APPLICATION AS POLYURETHANE CHAIN EXTENDER

TUAN NOOR MAZNEE BINTI TUAN ISMAIL

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2012

OPTIMIZATION OF ENZYMATIC PRODUCTION OF FATTY HYDRAZIDES AND THEIR APPLICATION AS POLYURETHANE CHAIN EXTENDER

TUAN NOOR MAZNEE BINTI TUAN ISMAIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfillment of the Requirement for the Degree of Master of Science

December 2012

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

OPTIMIZATION OF ENZYMATIC PRODUCTION OF FATTY HYDRAZIDES AND THEIR APPLICATION AS POLYURETHANE CHAIN EXTENDER

By

TUAN NOOR MAZNEE BINTI TUAN ISMAIL

December 2012

Chair: Nor Azowa Ibrahim, PhD

Faculty: Science

Enzymatic synthesis of fatty hydrazides from palm oil was first carried out using the reaction conditions reported by Mohamad et al. (2008) as for the starting point in optimization work. Fatty hydrazides were prepared by reacting refined, bleached and deodorized (RBD) palm olein with hydrazine monohydrate in the presence of enzyme and *n*-hexane. As for optimization, response surface methodology of central composite design of quadratic model has been applied. The optimum reaction conditions obtained using pH 7 adjusted hydrazine monohydrate were as follows: temperature, 40°C; time, 18 h; percentage of enzyme, 6% and stirring speed, 350 rpm. Study on the effect of pH of hydrazine monohydrate on the formation of fatty hydrazides indicated that the reaction was best carried out at pH 12. Further study using the optimum reaction conditions established through response surface methodology and hydrazine monohydrate of pH 12 drastically improved the conversion of the fatty hydrazides from 43.8% (pH 7) to 87.5% (pH 12). Composition of the hydrazides analyzed using GC also increased tremendously from 15.77% to 91.87%.

A bigger scale production of fatty hydrazides (using 1 kg RBD palm olein instead of 100 g) was conducted using the newly established optimum reaction conditions. However, due to the limitation of the reactor, the reaction mixture could only be stirred at the stirring speed of 150 rpm. But interestingly, the yield of fatty hydrazides produced was further increased by 24.4% and the composition of hydrazides shown by GC chromatogram increased by 6% compared to the hydrazides obtained from 100 g RBD palm olein. The GC/MS analysis indicated that the fatty hydrazides prepared contained a mixture of palmityl hydrazide and oleyl hydrazide. ¹H and ¹³C NMR chromatogram further confirmed the component of fatty hydrazides by the presence of proton chemical resonances, ¹H NMR, (600 MHz, DMSO-d₆) at δ 8.90 (s, -CONH), 5.32 (m, -CH=CH-), 2.17 (t, *J*=7.8 Hz,-CH₂-CO-), 2.08 (m, -NH₂), 1.98 (m, -CH₂-CH=CH-CH₂-, 4H), 1.46 (m, -CH₂CH₂CO-), 1.26 (m, -CH₂-, 24H), 0.85 (t, -CH₃) and carbon chemical resonances, ¹³C NMR, (150 MHz, DMSO-d₆) at δ 171.6 (-CON-) and 129.6 (-CH=CH-).

These optimized conditions were then applied for synthesis of fatty hydrazides from other triglycerides such as glyceryl trioleate, soybean oil and glyceryl tristearate. Compositions of fatty hydrazides obtained as shown by GC chromatogram were in the range of 81 to 91%. GC/MS analysis also indicated that glyceryl trioleate-based hydrazides or oleyl fatty hydrazides and soybean fatty hydrazides contained a mixture of palmityl hydrazide, oleyl hydrazide and linoleyl hydrazide. Stearyl fatty hydrazides were not analyzed using GC/MS due to the limitation of the oven temperature of the instrument. ¹H and ¹³C NMR chromatogram further confirmed the component of fatty hydrazides by the presence of proton chemical resonances, ¹H NMR, (600 MHz, DMSO-d₆) at δ 8.90 (s, -CONH), 5.32 (m, -CH=CH-), 2.17 (t, *J*=7.8 Hz,-CH₂-CO-), 2.08 (m, -NH₂), 1.98 (m, -CH₂-CH=CH-CH₂-, 4H), 1.46 (m, -CH₂CH₂CO-), 1.26 (m, -CH₂-, 24H), 0.85 (t, -CH₃) and carbon chemical resonances, ¹³C NMR, (150 MHz, DMSO-d₆) at δ 171.6 (-CON-) and 129.6 (-CH=CH-).

Finally, potential application of fatty hydrazides as a chain extender in rigid polyurethane foam was investigated. The reactivity of foaming process for foam and its thermal conductivity value increased with the presence of fatty hydrazides. However, the closed cell content of the foam seemed to decrease, therefore, the rigid polyurethane foam containing fatty hydrazides exhibits slightly inferior insulation property compared to the foam without fatty hydrazides. Based on these observations, fatty hydrazides might be more useful to be incorporated in formulation for flexible foam. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai mematuhi keperluan untuk ijazah Master Sains

PENGOPTIMUMAN PENGHASILAN BERENZIM HIDRAZIDA LEMAK DAN PENGGUNAANNYA SEBAGAI PEMANJANG RANTAI POLIURETANA

Oleh

TUAN NOOR MAZNEE BINTI TUAN ISMAIL

Disember 2012

Pengerusi: Nor Azowa Ibrahim, PhD

Fakulti: Sains

Sintesis hidrazida daripada minyak sawit menggunakan enzim pada mulanya dijalankan mengikut keadaan tindakbalas yang telah dilaporkan oleh Mohamad et al. (2008). Hidrazida dihasilkan melalui tindakbalas di antara minyak sawit olein dan hidrazin dengan kehadiran enzim di dalam pelarut heksana. Pengoptimuman sintesis berenzim hidrazida daripada minyak sawit menggunakan perisian kaedah rangsangan permukaan, rekabentuk komposit sentral dan model kuadratik telah diaplikasikan. Keadaan tindakbalas optimum yang diperolehi melalui kaedah ini menggunakan hidrazin monohidrat pada pH 7 ialah seperti berikut: suhu, 40°C; masa, 18 jam; kelajuan pengacau, 350 rpm dan enzim, 6%. Kajian

kesan pH hidrazin monohidrat ke atas pembentukan hidrazida menunjukkan tindakbalas adalah terbaik dijalankan pada pH 12. Kajian lanjut menggunakan keadaan-keadaan tindakbalas optimum yang diperolehi melalui kaedah rangsangan permukaan dan hidrazin monohidrat pH 12 telah secara drastik meningkatkan penukaran hidrazida daripada 43.8% (pH hidrazin 7) kepada 87.5% (pH hidrazin 12). Komposisi hidrazida yang dianalisa menggunakan kromatografi gas juga meningkat secara mendadak daripada 15.77% kepada 91.87%.

Penghasilan hidrazida pada skala lebih besar (minyak sawit olein sebanyak 1 kg telah digunakan berbanding 100 g yang digunakan sebelum ini) dengan menggunakan keadaan tindakbalas yang lebih optimum jaitu suhu, 40°C; masa, 18 jam; kelajuan pengacau, 350 rpm, enzim, 6% dan pH hidrazin, 12 telah dijalankan. Walau bagaimana pun, disebabkan oleh keterbatasan reaktor tindakbalas 10 L yang digunakan, campuran tindakbalas hanya boleh dikacau dengan kelajuan 150 rpm sahaja. Menariknya, hasil hidrazida yang diperolehi telah meningkat sebanyak 24.4% dan komposisi hidrazida berdasarkan kromatogram kromatografi gas telah meningkat sebanyak 6% berbanding hidrazida yang dihasilkan menggunakan 100 g minyak sawit olein. Analisa melalui GC/MS menunjukkan hidrazida yang dihasilkan terdiri daripada campuran palmitil hidrazida dan oleil hidrazida. Komponen kimia hidrazida telah disahkan melalui analisa proton dan karbon-13 NMR dengan kehadiran resonan kimia proton ¹H NMR, (600 MHz, DMSO-d₆) pada δ 8.90 (s, -CONH), 5.32 (m, -CH=CH-), 2.17 (t, J=7.8 Hz,-CH₂-CO-), 2.08 (m, -NH₂), 1.98 (m, -CH₂-CH=CH-CH₂-, 4H), 1.46 (m, -CH₂CH₂CO-), 1.26 (m, -

CH₂-, 24H), 0.85 (t, -CH₃) dan resonan kimia karbon, ¹³C NMR, (150 MHz, DMSO-d₆) pada δ 171.6 (-CON-) dan 129.6 (-CH=CH-).

Keadaan-keadaan tindakbalas optimum ini kemudian telah digunakan untuk menghasilkan hidrazida-hidrazida daripada sumber trigliserida yang lain seperti gliseril trioleat, minyak kacang soya dan gliseril tristearat. Komposisi hidrazida-hidrazida yang diperolehi berdasarkan analisa kromatografi gas adalah dalam lingkungan 81 hingga 91%. Analisa GC/MS menunjukkan hidrazida berasaskan gliseril trioleat dan minyak kacang soya terdiri daripada campuran palmitil hidrazida, oleil hidrazida dan linoleil hidrazida. Hidrazida berasaskan gliseril tristearat tidak dianalisa menggunakan GC/MS disebabkan oleh keterbatasan suhu oven peralatan tersebut. Komponen kimia hidrazida telah disahkan melalui analisa proton dan karbon-13 NMR dengan kehadiran resonan kimia proton, ¹H NMR, (600 MHz, DMSO-d₆) pada δ 8.90 (s, -CONH), 5.32 (m, -CH=CH-), 2.17 (t, *J*=7.8 Hz,-CH₂-CO-), 2.08 (m, -NH₂), 1.98 (m, -CH₂-CH=CH-CH₂-, 4H), 1.46 (m, -C<u>H</u>₂CH₂CO-), 1.26 (m, -CH₂-, 24H), 0.85 (t, -CH₃) dan resonan kimia karbon, ¹³C NMR, (150 MHz, DMSO-d₆) pada δ 171.6 (-CON-) dan 129.6 (-CH=CH-).

Akhirnya, potensi penggunaan hidrazida sebagai pemanjang rantai dalam formulasi busa poliuretana tegar telah dikaji. Profil kereaktifan busa semasa pembusaan dan nilai kekonduksian terma busa telah meningkat dengan kehadiran hidrazida. Walau bagaimana pun, kandungan sel tertutup busa didapati berkurangan, oleh itu, busa poliuretana tegar yang mengandungi hidrazida kurang bersifat penebat berbanding busa poliuretana tegar tanpa kehadiran hidrazida. Berdasarkan pemerhatian ini, hidrazida mungkin lebih sesuai digunakan di dalam formulasi busa poliuretana fleksibel berbanding busa poliuretana tegar.

ACKNOWLEDGEMENTS

Alhamdulillah, thanks to Allah for His bless.

I would like to express my great appreciation to my supervisor Prof Dato' Dr Wan Md Zin Wan Yunus for his great supervision and support throughout my study, Dr Hazimah Abu Hassan for her full support and guidance, Dr Nor Azowa Ibrahim and Dr Mansor Ahmad for their valuable assistances and advices. I also would like to extend my great appreciation to Malaysian Palm Oil Board for funding my study.

I would like to thank my colleagues at Advanced Oleochemical Technology Division especially members of Polymer and Composite Group and Head of SPD Unit for supporting me. Many thanks to Zulhilmy and Bahriah for their great assistances and supports.

To my beloved father, Tuan Ismail Raja Daud, my beloved mother, Mek Daud, my beloved husband, Azman Mohd Mukhatar, my beloved children, Adam Hakimi, Akmal Daniel and Alya Najwa; and my sister, Tuan Noor Mazian, thank you very much for your great support and understanding. I certify that a Thesis Examination Committee has met on 27 December 2012 to conduct the final examination of Tuan Noor Maznee Tuan Ismail on her thesis entitled "Optimization of Enzymatic Production of Fatty Hydrazides and Their Application as Polyurethane Chain Extender" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mahiran Basri, PhD

Professor Center of Foundation Studies for Agricultural Science Universiti Putra Malaysia (Chairman)

Bimo Ario Tejo, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Emilia Abd. Malik, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Jumat Salimon, PhD

Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia Malaysia (External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

The thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nor Azowa Ibrahim, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Mansor Hj. Ahmad @ Ayob, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Hazimah Abu Hassan, PhD

Director Advanced Oleochemical Technology Division Malaysian Palm Oil Board (Member)

Wan Md Zin Wan Yunus, PhD

Professor Chemistry Department Universiti Pertahanan Nasional Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been dully acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TUAN NOOR MAZNEE TUAN ISMAIL

Date: 27 December 2012

LIST OF TABLES

Table	F	Page
1.1	Optimum conditions of hydrazinolysis of palm olein	2
1.2	Optimum conditions of hydrazinolysis of palm oil	2
2.1	Commercially available enzymes useful for biocatalytic modification of lipids	11
2.2	Acylation of hydroxylamine and hydrazine derivatives	16
2.3	Rhizomucor miehei lipase catalyzed enantioselective resolution of chiral alcohols via acyl-transfer methodology	17
2.4	The reaction time and product yields of hydrazinolysis of methyl salicylate using different methods	30
2.5	Microwave–ultrasound combined hydrazinolysis of various methyl esters	31
3.1	Fatty acid composition of oils, %	48
3.2	Experimental conditions of central composite design (CCD) runs of Design-Expert 6 and corresponding result (the response)	55
3.3	Amount of concentrated hydrochloric acid (37%) required to change the pH of hydrazine monohydrate to the desired value	57
4.1	ANOVA results for the quadratic equation of Design-Expert 6 for the response	66
4.2	Reaction conditions of Mohamad et al. (2008) and established reaction conditions using RSM	76
4.3	Appearance of hydrazides obtained from the experiment conducted at various pH	83
4.4	Nitrogen content of fatty hydrazides produced at different pHs of hydrazine monohydrate using 5% enzyme	86
4.5	Initial thermal decomposition temperature for hydrazides prepared at different pHs of hydrazine monohydrate using 5% enzyme	89
4.6	Thermal decomposition temperature of RBD palm olein and fatty hydrazides for both hydrazine monohydrate of pH 7 and 12	96

4.7	Composition of fatty hydrazides prepared from hydrazine monohydrate of pH 7 and pH 12 analyzed by GC	98
4.8	Elemental analysis of pH126E,350,18 (100 g) and pH126E,150,18 (1 kg) fatty hydrazides	100
4.9	Thermal stability of fatty hydrazides prepared using 100 g and 1 kg RBD palm olein	102
4.10	Composition of fatty hydrazides prepared using 100 g and 1 kg RBD palm olein analyzed by GC	104
4.11	Proton chemical shift ranges	109
4.12	Carbon chemical shift ranges	110
4.13	Nitrogen content of oleyl-, stearyl- and soybean- fatty hydrazides and their conversion	115
4.14	Thermal decomposition of the fatty hydrazides	116
4.15	Composition of fatty hydrazides at retention time 16.42 min. and 19.23 min. prepared using different types of oils analyzed by GC	120

C

LIST OF FIGURES

Figure		
2.1	Reaction of <i>N</i> -methylglucamine with oleic acid mediated by <i>Rhizomucor miehei</i> lipase (RML)	15
2.2	Hydrolysis via chemical and enzymatic pathways. <u>S</u> refers to the rest of the molecule in soybean oil	18
2.3	Production of biodiesel catalyzed by RML	19
2.4	Reaction mechanism of lipase catalysis; the numbering is for <i>Candida antarctica</i> lipase, denotes a hydrogen bond; step (<i>iii</i>) is the microscopic reversal of steps (<i>i</i>) and (<i>ii</i>)	20
2.5	World production of 13 vegetable oils (%)	22
2.6	World exports of 13 vegetable oils (%)	22
2.7	Chemical structure of hydrazides	24
2.8	Resonance forms of hydrazides	24
2.9	Hydrazides of carboxymethyldimethyl C12-C18 aliphatic ammonium chlorides.	27
2.10	Synthesis of hydrazones from hydrazides; a is for $R = CH_3(CH_2)_9$; b is for $R = CH_3(CH_2)_{16}$; c is for $R = CH_3(CH_2)_5CHOH(CH_2)_{10}$ and d is for $R = CH_3(CH_2)_8CHOH(CH_2)_7$	29
2.11	A mechanistic proposal for the amidase reaction yielding a hydrazide. In the reaction, the active functional group of the enzyme was indicated by EXH. The tetrahedral intermediate was indicated by [I] and [I']	34
2.12	Mechanism for acyl transfer reaction from amides to hydroxylamine (a) and the amide hydrolysis reaction (b) catalyzed by aliphatic amidase.	35
2.13	Fatty hydrazides and their Schiff bases	37
2.14	Chemically synthesized hydrazides and their triazines derivatives	39
2.15	Proposed mechanism for acyl transfer reaction from triglycerides (a) to hydrazine for the formation of fatty hydrazides (e). (b) is lipase (<i>Rhizormucor miehei</i>), (c) is	

	acyl-enzyme tetrahedral intermediate and (d) is acyl-enzyme complex. $R_{\rm n}$ indicates fatty acid of different chain length	41
3.1	Organic phase and water phase layers	49
3.2	Product (a) before enzyme separation and (b) after enzyme separation at room temperature (28°C)	50
3.3	Fatty hydrazides	51
4.1	Predicted amount of hydrazides versus actual	67
4.2	Amount of hydrazides as a function of reaction temperature and percentage of enzyme at fixed stirring speed (400 rpm) and reaction time (20 h) in 2D and 3D surface views, respectively	68
4.3	Amount of hydrazides as a function of stirring speed and percentage of enzyme at fixed reaction temperature (40°C) and reaction time (20 h) in 2D and 3D surface views	69
4.4	Amount of hydrazides as a function of reaction time and percentage of enzyme at fixed reaction temperature (40°C) and stirring speed (400 rpm) in 2D and 3D surface views	70
4.5	Amount of hydrazides as a function of stirring speed and reaction temperature at fixed percentage of enzyme (5%) and reaction time (20 h) in 2D and 3D surface views	71
4.6	Amount of hydrazides as a function of reaction time and reaction temperature at fixed percentage of enzyme (5%) and stirring speed (400 rpm) in 2D and 3D surface views	72
4.7	Amount of hydrazides as a function of reaction time and stirring speed at fixed percentage of enzyme (5%) and reaction temperature (40°C) in 2D and 3D surface views	73
4.8	Plot of studentized residuals versus predicted for amount of hydrazides	74
4.9	Mixture of raw materials at early stage of reaction (left) and hydrazides obtained after the reaction (right). Hydrazine monohydrate of pH 7 was used	76
4.10	FTIR spectra of RBD palm olein, hydrazides prepared using reaction conditions reported by Mohamad et al. (2008) and hydrazides prepared using reaction conditions established using RSM	77
4.11	Thermograms for RBD palm olein, hydrazides prepared using	

	reaction conditions reported by Mohamad et al. (2008) and hydrazides prepared using reaction conditions established using RSM	78
4.12	GC chromatograms of RBD palm olein, hydrazides prepared using reaction conditions reported by Mohamad et al. (2008) and hydrazides prepared using reaction conditions established using RSM	79
4.13	Wet hydrazides prepared using hydrazine monohydrate of pH7 (left) and pH 12 (right)	82
4.14	FTIR spectra of RBD palm olein and hydrazides produced at different pHs of hydrazine monohydrate using 5% enzyme	85
4.15	Conversion of fatty acid of oil into fatty hydrazides at different pHs of hydrazine monohydrate using 5% enzyme	87
4.16	Thermograms for the RBD palm olein and fatty hydrazides produced at different pHs of hydrazine monohydrate using 5% enzyme	88
4.17	GC chromatograms of RBD palm olein and hydrazides produced at different pH of hydrazine monohydrate using 5% enzyme	90
4.18	FTIR spectra for fatty hydrazides prepared using newly established optimum reaction conditions (pH126E,350,18) and previous reaction conditions (pH76E,350,18)	94
4.19	Thermograms for RBD palm olein (solid green) and fatty hydrazides for both hydrazine monohydrate of pH 7 (dashed black) and 12 (dashed dotted blue)	95
4.20	GC chromatograms for fatty hydrazides prepared using hydrazine monohydrate of pH 7 (middle chromatogram) and pH 12 (bottom chromatogram)	97
4.21	FTIR spectra for fatty hydrazides produced using 100 g and 1 kg of RBD palm olein	101
4.22	Thermograms of fatty hydrazides prepared using 100 g (solid green) and 1 kg (dashed green) RBD palm olein	102
4.23	GC chromatograms for fatty hydrazides produced using (a) 100 g and (b) 1 kg of RBD palm olein	104
4.24	GC/MS chromatogram of fatty hydrazides produced using 100 g RBD palm olein	107

4.25	Proposed fragment ions for palmityl hydrazide	107
4.26	Proposed fragment ions for oleyl hydrazide	107
4.27	GC/MS chromatogram of fatty hydrazides produced using 1 kg RBD palm olein	108
4.28	Proton chemical resonance for fatty hydrazides	111
4.29	Carbon chemical resonance for fatty hydrazides	112
4.30	FTIR spectra of (a) glyceryl trioleate and oleyl fatty hydrazides, (b) glyceryl tristearate and stearyl fatty hydrazides, and (c) soybean oil and soybean fatty hydrazides	114
4.31	Thermograms for (a) glyceryl trioleate and oleyl fatty hydrazides, (b) glyceryl tristearate and stearyl fatty hydrazides and (c) soybean oil and soybean fatty hydrazides	117
4.32	GC chromatograms of (a) oleyl fatty-, soybean fatty-, hydrazides and standard fatty acids (C8 to C18:0 and C18:1) and (b) stearyl fatty hydrazides	119
4.33	 (a) GC/MS chromatogram for oleyl fatty hydrazides, (b) fragment ions for palmityl hydrazide, (c) fragment ions for oleyl hydrazide, (d) fragment ions for <i>cis</i>-linoleyl hydrazide and (e) fragment ions for <i>trans</i>-linoleyl hydrazide 	123
4.34	 (a) GC/MS chromatogram for soybean fatty hydrazides, (b) fragment ions for palmityl hydrazide, (c) fragment ions for oleyl hydrazide, (d) fragment ions for <i>cis</i>-linoleyl hydrazide and (e) fragment ions for <i>trans</i>-linoleyl hydrazide 	125
4.35	Proposed fragment ions for linoleyl hydrazide	125
4.36	Proton chemical resonance for (a) oleyl- and (b) soybean- fatty hydrazides	127
4.37	Carbon chemical resonance for (a) oleyl- and (b) soybean- fatty hydrazides	128
4.38	Reactivity for polyurethane foaming process for foam without hydrazides (RH-1) and foam with 0.1% w/w fatty hydrazides (RH-2), 0.3% w/w fatty hydrazides (RH-3) and 0.5% w/w fatty hydrazides (RH-4)	130
4.39	Thermal conductivity value of foams determined at several temperatures	132
4.40	Cell distribution of polyurethane foam without fatty	
	 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.35 4.36 4.37 4.38 4.39 4.40 	 4.25 Proposed fragment ions for palmityl hydrazide 4.26 Proposed fragment ions for oleyl hydrazide 4.27 GC/MS chromatogram of fatty hydrazides produced using 1 kg RBD palm olein 4.28 Proton chemical resonance for fatty hydrazides 4.29 Carbon chemical resonance for fatty hydrazides 4.30 FTIR spectra of (a) glyceryl trioleate and oleyl fatty hydrazides, (b) glyceryl tristearate and stearyl fatty hydrazides, and (c) soybean oil and soybean fatty hydrazides 4.31 Thermograms for (a) glyceryl trioleate and oleyl fatty hydrazides and (c) soybean oil and soybean fatty hydrazides 4.31 Thermograms for (a) glyceryl tristearate and stearyl fatty hydrazides and (c) soybean oil and soybean fatty hydrazides 4.32 GC chromatograms of (a) oleyl fatty-, soybean fatty-, hydrazides and standard fatty acids (C8 to C18:0 and C18:1) and (b) stearyl fatty hydrazides 4.33 (a) GC/MS chromatogram for oleyl fatty hydrazides, (b) fragment ions for palmityl hydrazide, (c) fragment ions for oleyl hydrazide, (d) fragment ions for <i>cis</i>-linoleyl hydrazide and (e) fragment ions for <i>trans</i>-linoleyl hydrazide 4.34 (a) GC/MS chromatogram for soybean fatty hydrazides, (b) fragment ions for palmityl hydrazide, (c) fragment ions for oleyl hydrazide, (d) fragment ions for <i>cis</i>-linoleyl hydrazide 4.35 Proposed fragment ions for linoleyl hydrazide 4.36 Proton chemical resonance for (a) oleyl- and (b) soybean- fatty hydrazides 4.37 Carbon chemical resonance for (a) oleyl- and (b) soybean- fatty hydrazides 4.38 Reactivity for polyurethane foaming process for foam without hydrazides (RH-1) and foam with 0.1% ww fatty hydrazides (RH-2), 0.3% w/w fatty hydrazides (RH-3) and 0.5% w/w fatty hydrazides (RH-4) 4.39 Thermal conductivity value of foams determined at several temperatures 4.40 Cell distribution of polyurethane foam without fatty

	hydrazides (RH-1) and with 0.5% w/w fatty hydrazides viewed under microscope at 4x and 10x magnification	133
4.41	Thermal decomposition and weight derivative curve for polyurethane foam with and without fatty hydrazides	134
5.1	Fatty hydrazides from RBD palm olein	137

LIST OF SCHEMES

Sche	me	Page
1.1	General reaction to form acyl hydrazides from vegetable oil	3
1.2	Formation of benzoic acid hydrazide from benzamide and hydrazine catalyzed by amidase of <i>Rhodococcus sp.</i> R312	7
2.1	Ammoniolysis of olive oil	14
2.2	Condensation of taurine and oleic acid	15
2.3	Synthesis of phenylacetic acid hydrazides	26
2.4	Reaction of fatty acid chlorides with hydrazine hydrate resulted in either formation of (a) fatty monohydrazides or (b) fatty <i>sym</i> -dihydrazides	27
2.5	Mechanism for reduction and acylation of hydrazones	28
2.6	3,5,6-trisubstituted-1,2,4-triazines derivatives of fatty acid hydrazides prepared using microwave irradiation technique. R_1 refers to various saturated and unsaturated hydrocarbons and R_2 , R_3 refer to etiher CH ₃ or Ph	32
2.7	Reaction for fatty acid ester and fatty acid hydrazides preparation	38
4.1	Reaction between hydrazine monohydrate and hydrochloric acid solution in excess	81
4.2	Reaction between hydrazine monohydrate and hydrochloric acid solution	81
4.3	Reaction between hydrazides and isocyanate	129

LIST OF EQUATIONS

Equation Page $X_i = \underbrace{U_i - U_i^o}_{\Delta U_i}$ 3.1 53 $Y = \beta_0 + \sum_{i} \beta_i X_i + \sum_{i} \beta_{ii} X_i^2 + \sum_{i} \beta_{ij} X_i X_j$ 3.2 54 Conversion, % = <u>mmol product</u> mmol fatty acid in the oil 3.3 59 – x 100 Yield, % = Experimental yield Theoretical yield 3.4 59 Х 100 C

LIST OF ABBREVIATIONS

analysis of variance ANOVA AOCS American Oil Chemists Society ATR attenuated total reflectance BSTFA N,O-bis(trimethylsily)trifluoroacetamide CCD central composite design diacylglycerol DAG dibutyltindilaurate DBTDL DCM dichloromethane DMF dimethylformamide dimethylsulfoxide DMSO FID flame ionization detector FTIR Fourier transform infrared GC gas chromatography GC/MS gas chromatography/mass spectrometry HCI hydrochloric acid H_2O water LSD least significant difference MAG monoacylglycerol

NMR	nuclear magnetic resonance
PU	polyurethane
RBD	refined, bleached and deodorized
RML	Rhizomucor miehei lipase
RSM	response surface methodology
TAN	total acid number
TGA	thermogravimetry analysis
2D	two dimension
3D	three dimension
w/w	weight by weight

C

TABLE OF CONTENTS

			Page
А	BST	RACT	ii
Α	BST	RAK	V
A		OWLEDGEMENTS	ix
A			X
L		DF TABLES	xiii
LI	IST (OF FIGURES	XV
L	IST (OF SCHEMES	xx
L	ISI (IST (DF EQUATIONS	XXI
E.I	101 0	DF ABBREVIATIONS	
С	HAP		
	1	INTRODUCTION	
		1.1 Background of Study	1
		1.1.1 Synthesis of Fatty Hydrazides	1
		1.1.2 Optimization of Hydrazides Production	3
		1.2 Objectives of Study	8
	2		0
		2.1 Lipases 2.1.1 Selectivity of Lipases	9 Q
		2.1.2 Sources and Application of Lipases	10
		2.1.3 Lipases in Oils and Fats and as Industrial	
		Biocatalysts	12
		2.1.4 Mechanistic Considerations of Lipase-catalyzed	10
		2.2 Palm Oil	20
		2.2.1 Palm Oil Industry	21
		2.2.2 Application of Palm Oil	23
		2.3 Hydrazides	23
		2.3.1 Chemical Synthesis of Hydrazides	25
		2.3.2 Enzymatic Synthesis of Hydrazides	32
		2.3.3 Hydrazides from Triglycerides	36
		from Trialvcerides	40
		2.4 Application of Hydrazides	41
		2.4.1 Application of Hydrazides in Polyurethane Foam	43
	3	MATERIALS AND METHODS	
		3.1 Materials and Equipment for Synthesis of Hydrazides	45
		3.1.1 Materials for Synthesis of Hydrazides	45

	3.1.2 Equipment for Characterization of Fatty	
	Hydrazides	45
	3.2 Materials and Equipment for Application Study	
	(Polyurethane Foam)	46
	3.2.1 Materials	46
	3.2.2 Equipment	46
	3.3 Fatty Acid Composition of Raw Materials	47
	3.4 Experimental Procedure	48
	3.5 Separation and Drying Processes of Fatty Hydrazides	50
	3.6 Optimization of Enzymatic Synthesis of Fatty Hydrazides	51
	3.6.1 Model Design	52
	3.7 Effect of pH of Hydrazine Mononydrate on the Conversion	
	of RBD Palm Olein to Fatty Hydrazides	57
	3.8 Preparation of Fatty Hydrazides from Glyceryl Trioleate,	50
	Giveryl Tristearate and Soybean Oli	58
	3.9 Calculation for the Conversion of Triglycerides to Fatty	50
	Hydrazides	59
	3.10 Calculation for the Yield of Fatty Hydrazides	59
	3.11 Characterization of Fatty Hydrazides	60
	3.11.1 Fourier Transform Infrared with Attenuated Total	<u> </u>
	Reflectance (FTIR/ATR)	60
	3.11.2 Elemental Analysis	60
	3.11.3 Thermogravimetry Analysis (TGA)	60
	3.11.4 Gas Chromatography (GC) Analysis	60
	3.11.5 H and "C Nuclear Magnetic Resonance (NMR)	61
	Analysis	01
	3. 11.6 Gas Chromatography/Mass Spectrometry (GC/MS)	60
	Analysis	62
	3.12 Preparation of Rigid Polyurethane Foam	62
	3.13 Characterization of Rigid Polyurethane Foam	63
	2.12.2 Free Dise Density	62
	2.12.2 Thermal Conductivity Value	64
	3.13.3 Memial Conductivity Value	64
	3.13.5 Observation of Polyurothana Foam Coll under	04
	5.15.5 Observation of Polydretinane Foarn Ceir under	64
	3 13 6 Thermal Decomposition Temperature T	64
	5.15.6 merital Decomposition remperature, T_d	04
7	4.1 Optimization of Fatty Hydrazides Using RSM	65
	4.2 Effect of pH of Hydrazine Monohydrate on the Conversion	00
	of Fatty Hydrazides	80
	4.3 Characterization of Fatty Hydrazides	83
	4.3.1 Fourier Transform Infrared/Attenuated Total	00
	Reflectance (ATR)	83
	4.3.2 Elemental Analysis	85
	4.3.3 Thermogravimetry Analysis (TGA)	87
	4.3.4 Gas Chromatography (GC) Analysis	89

4.3.4 Gas Chromatography (GC) Analysis4.4 Optimum Conditions for Enzymatic Synthesis of Fatty

Hydrazides	92	
4.4.1 Fourier Transform Infrared/ Attenuated Total Reflectance	93	
4.4.2 Gas Chromatography (GC) Analysis	94 96	
4.5 Scale-up Production of Fatty Hydrazides Using Optimized Reaction Conditions	98	
4.5.1 Elemental Analysis 4.5.2 Equator Transform Infrared with Attenuated Total	99	
4.5.2 Fourier Transform Innared with Attendated Total Reflectance	100	
4.5.5 Thermogravinetry Analysis (TGA) 4.5.4 Gas Chromatography (GC) Analysis	101	
4.5.5 Gas Chromatography/Mass Spectrometry (GC/MS)	100	
Analysis	105	
4.5.6 ¹ H and ¹³ C Nuclear Magnetic Resonance (NMR)	109	
4.6 Fatty Hydrazides from Glyceryl Trioleate, Glyceryl	110	
4 6 1 Fourier Transform Infrared/Attenuated Total	112	
Reflectance	113	
4.6.2 Elemental Analysis	115	
4.6.3 Thermogravimetry Analysis (TGA)	115	
4.6.4 Gas Chromatography (GC) Analysis	118	
4.6.5 Gas Chromatography/Mass Spectrometry Analysis (GC/MS)	120	
4.6.6 H and C Nuclear Magnetic Resonance (NMR)	126	
4.7 Effect of Fally Hydrazides as Chain Extended in Rigid	128	
4.7.1 Reactivity of Polyurethane Foaming Process	129	
4.7.2 Core Density	130	
4.7.3 Thermal Conductivity Value and Closed Cell	131	
4.7.4 Polyurethane Foam Cells Structure	132	
4.7.5 Thermal Decomposition Temperature of Foam	133	
5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR		
FUTURE RESEARCH		
5.1 Summary and Conclusion	135	
5.2 Recommendation for Future Research	139	
REFERENCES	140	
BIODATA OF STUDENT	149	
LIST OF PUBLICATIONS		