

UNIVERSITI PUTRA MALAYSIA

ISOLATION AND BIOACTIVITY OF CHEMICAL CONSTITUENTS FROM ZINGIBER CASSUMUNAR ROXB. AND AGLAIA OLIGOPHYLLA MIQ.

MOHD ZULKHAIRI BIN AZID

FS 2012 52

ISOLATION AND BIOACTIVITY OF CHEMICAL CONSTITUENTS FROM ZINGIBER CASSUMUNAR ROXB. AND AGLAIA OLIGOPHYLLA MIQ.

MOHD ZULKHAIRI BIN AZID

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2012

ISOLATION AND BIOACTIVITY OF CHEMICAL CONSTITUENTS FROM ZINGIBER CASSUMUNAR ROXB. AND AGLAIA OLIGOPHYLLA MIQ.

MOHD ZULKHAIRI BIN AZID

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

May 2012

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ISOLATION AND BIOACTIVITY OF CHEMICAL CONSTITUENTS FROM ZINGIBER CASSUMUNAR ROXB. AND AGLAIA OLIGOPHYLLA MIQ.

By

MOHD ZULKHAIRI BIN AZID

 May 2012

 Chairman
 : Professor Mohd Aspollah bin Sukari, PhD

 Faculty
 : Science

Zingiber cassumunar Roxb. (Zingiberaceae) or locally known as "Bonglai" among Malay is traditionally used as medicines to treat, skin disease, inflammation and as one of the component in herbal spices. From the isolation worked on the rhizomes of *Zingiber cassumunar*, five compounds isolated were elucidated as *cis*-3-(3',4'- dimethoxyphenyl)-4-[(*E*)-3''',4'''-dimethoxystyryl]cyclo-hex-1-ene (**21**), (*E*)-4-(3',4'- dimethoxyphenyl)but-3-en-1-ol (**12**), 3,4-dimethoxybenzoic acid (**29**), 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (**20**), and beta-sitosterol (**30**).

Aglaia oligophylla Miq. belongs to the Meliaceae family which is a large tree up to 25 meter high and locally is known as "Bekak". *Aglaia* species have received a lot of attention lately due to its strong insecticidal and cytotoxic activity. Phytochemical studies on stem bark of *Aglaia oligophylla* has afforded dammarane acid type of compounds, namely 20*S*,24*R*-epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic

acid (77) and 20*S*,24*S*-epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (78) while separation work from the trunk of *Aglaia oligophylla* successfully isolated one compound identified as silvaglin A (47) along with beta-sitosterol (30). Compounds (77) and (78) have never been reported previously, while silvaglin A (47) was isolated for first time from *Aglaia oligophyalla*. Structure of the compounds were elucidated using various spectroscopic techniques such as GCMS, HRESIMS, FT-IR, 1D NMR and 2D NMR and comparison with the previous worked.

In vitro investigation on the cytotoxic activitiy of isolates of both plants have been carried out towards human T-lymphoblastic (CEM-SS) and human cervical (HeLa) cancer cells. All the extracts of rhizomes Zingiber cassumunar showed no activity towards (CEM-SS) with IC₅₀ values of $> 30 \mu g/ml$ except for chloroform extract, which displayed IC₅₀ value of 9.20 \pm 0.02 μ g/ml. Compounds (20) and (21) also exhibited moderate cytotoxic activity against CEM-SS cells with IC₅₀ values 25.96 \pm 0.94 and $28.34 \pm 0.39 \mu g/ml$, respectively. Meanwhile, all crude extracts from Zingiber cassumunar displayed no cytotoxicity activity against HeLa cells. However, all compounds isolated showed significant cytotoxic activity against HeLa cell line with IC_{50} values < 15 µg/ml. Most of the crude extracts from stem bark of Aglaia oligophylla showed no cytotoxic activity towards CEM-SS cells except for methanol extract with $I\!C_{50}$ value 22.76 \pm 0.08 $\mu g/ml.$ All extracts from trunk also did not give any activity towards CEM-SS cells. Meanwhile, petroleum ether, chloroform and ethyl acetate extracts from stem bark of Aglaia oligophylla showed moderate cytotoxic activity with IC_{50} value less than 15 µg/ml against HeLa cells whilst methanol extract showed IC_{50} value of 22.93 \pm 0.38. However, all extracts from trunk exhibit no cytotoxicity towards HeLa cells. Surprisingly, compounds (47), (77) and (78) showed interesting cytotoxic activity towards HeLa cancer cell line with IC₅₀ value less than 15 µg/ml.

Apart from the above activity, antimicrobial assay were also carried out on the isolates of the plants. Only certain extracts from *Zingiber cassumunar* and *Aglaia oligophylla* exhibit weak inhibition towards selected microbes and fungi while the rest were not active. Meanwhile, all extracts from both plants did not show any activity towards larvae of *Aedes aegypti*.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENGASINGAN DAN AKTIVITI BIOLOGI KOMPONEN KIMIA DARIPADA ZINGIBER CASSUMUNAR ROXB. DAN AGLAIA OLIGOPHYLLA MIQ.

Oleh

MOHD ZULKHAIRI BIN AZID

Mei 2012

Pengerusi : Profesor Mohd Aspollah bin Sukari, PhD Fakulti : Sains

Zingiber cassumunar (Zingiberaceae) Roxb. atau lebih dikenali sebagai "Bonglai" oleh masyarakat Melayu telah digunakan secara tradisional sebagai ubat untuk merawat penyakit kulit, keradangan dan salah satu komponen di dalam ramuan herba. Daripada kajian pengasingan ke atas rizom Zingiber cassumunar, 5 sebatian telah berjaya diasingkan yang dikenali sebagai cis-3-(3',4'-dimetoksifenil)-4-[(E)-3''',4'''-dimetoksistiril]siklo-hek-1-ena (21), (E)-4-(3',4'-dimetoksifenil)but-3-en-1-ol (12), asid 3,4-dimetoksibenzoik (29), 8-(13,14-dimetoksifenil)-2-metoksinafto-1,4-kuinon (20), dan beta-sitosterol (30).

Aglaia oligophylla Miq. tergolong di dalam famili Meliaceae dan merupakan sebuah pokok besar yang boleh mencapai sehingga 25 meter tinggi dan dikenali sebagai "Bekak" dikalangan penduduk tempatan. Kebelakangan ini, spesies *Aglaia* telah mendapat banyak perhatian berikutan kekuatan aktiviti dari segi sifat sitotoksik dan

insektisidal spesies tersebut. Kajian fitokimia terhadap kulit pokok *Aglaia oligophylla* telah berjaya mengasingkan dua sebatian jenis asid damaran yang dinamakan sebagai asid 20*S*,24*R*-epoksi-25-hidroksi-2-metoksi-2,3-sekodammaran-3-oik (**77**) dan asid 20*S*,24*S*-epoksi-25-hidroksi-2-metoksi-2,3-sekodammaran-3-oik (**78**) dan manakala pengasingan daripada batang pokok pula telah berjaya memencilkan satu sebatian dinamakan sebagai silvaglin A (**47**) dan beta-sitosterol (**30**). Sebatian (**77**) dan (**78**) belum pernah dilaporkan sebelum ini, manakala silvaglin A (**47**) pertama kali diasingkan daripada *Aglaia oligophylla*. Struktur sebatian telah dielusidasi menggunakan pelbagai teknik spektroskopi seperti GCMS, HRESIMS, FT-IR, 1D NMR dan 2D NMR serta perbandingan dengan kajian sebelum ini.

Kajian *in vitro* terhadap aktiviti sitotoksik daripada kedua-dua pokok tersebut telah dijalankan terhadap sel kanser manusia iaitu T-limfoblastik (CEM-SS) dan sel kanser serviks (HeLa). Kesemua ekstrak daripada rizom *Zingiber cassumunar* tidak menunjukkan aktiviti terhadap sel CEM-SS dengan nilai IC₅₀ > 30 µg/ml kecuali ekstrak kloroform yang menunjukkan nilai IC₅₀ 9.20 \pm 0.02 µg/ml. Sebatian (**20**) dan (**21**) juga menunjukkan aktiviti sitotoksik yang sederhana terhadap sel CEM-SS dengan nilai IC₅₀ 25.96 \pm 0.94 dan 28.34 \pm 0.39 µg/ml. Manakala, kesemua ekstrak mentah daripada rizom *Zingiber cassumunar* tidak menunjukkan aktiviti sitotoksik terhadap sel HeLa. Walaubagaimana pun, kesemua sebatian menunjukkan aktiviti sitotoksik yang signifikan terhadap sel HeLa dengan nilai IC₅₀ < 15 µg/ml. Hampir kesemua ekstrak daripada kulit pokok *Aglaia oligophylla* tidak menunjukkan aktiviti sitotoksik terhadap sel kanser CEM-SS kecuali ekstrak metanol dengan nilai IC₅₀ 22.76 \pm 0.08 µg/ml. Kesemua

ekstrak daripada batang pokok juga tidak memberikan sebarang aktiviti terhadap sel CEM-SS. Manakala, ekstrak petroleum eter, kloroform dan etil asetat dari kulit pokok *Aglaia oligophylla* menunjukkan aktiviti sitotoksik yang sederhana dengan nilai IC_{50} kurang daripada 15 µg/ml terhadap sel Hela, manakala ekstrak metanol menunjukkan nilai $1C_{50}$ 22.93 ± 0.38. Manakala, kesemua ekstrak daripada batang pokok tidak menunjukkan aktiviti sitotoksik terhadap sel HeLa. Akan tetapi, sebatian (47), (77) dan (78) menunjukkan aktiviti sitotoksik yang menarik terhadap sel kanser HeLa dengan nilai IC_{50} kurang daripada 15 µg/ml.

Selain daripada aktiviti di atas, kajian antimicrobial juga telah dijalankan terhadap isolat dari kedua-dua tumbuhan. Hanya sebahagian ekstrak daripada *Zingiber cassumunar* dan *Aglaia oligophylla* menunjukkan perencatan yang lemah terhadap mikrob dan fungi terpilih sedangkan yang lain adalah tidak aktif. Manakala, kesemua ekstrak dari kedua-dua pokok tidak menunjukkan sebarang aktiviti terhadap larva *Aedes aegypti*.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and Merciful

Alhamdulilah, all praises to Allah for the strengths and His blessing in completing this thesis. First and foremost, I offer my sincerest gratitude to my supervisor, Prof. Dr. Mohd Aspollah Sukari, who has supported me throughout my research with his patience, knowledge, financial assistant and also providing the opportunities to attend various seminars and conference throughout this research. Without him this thesis, would not have been completed or written. I would like to record my gratitude to my co-supervisors, Prof. Dr. Gwendoline Ee Cheng Lian and Dr. Ahmad Bustamam for their valuable advices during this research.

Many thanks to staff in UPM-MAKNA Cancer Research Laboratory for their assistance and providing the facilities in anticancer testing. Besides, assistance from Prof. Dr. Mohd Ambar Yarmo (UKM), Mr. Alefee (UKM) and Dr Nor Azah Mohamad Ali (FRIM) in obtaining experimental data is highly appreciated.

I would like to express my appreciation to Science officers and laboratory assistance Mr. Johadi Iskandar, Ms. Sharina, Mr. Fazley, Madam Rusnani Amirudin, Mr Zainal Kassim, Mr Ismail Yasin and Madam Rakina bt Manaf for their help and co-operation.

I would like to thank Ministry of Science, Technology and Innovation (MOSTI) for awarding me National Science Fellowship (NSF) during my study. I am grateful to be chosen as one of the recipient in the programme. Sincere thanks to all my labmates, Dr Tang Sook Wah, Rahayu Utami Umar, Noorul Adawiyah Mustahil, Halimatul Saadiah Mohd Noor, Sadikah Ahmad and Nur Liyana Ithnin for their support and motivation. Thanks for the memories and the friendships.

Last but not least, I owe my deepest gratitude to my beloved parents, Mr Azid Kassim and Siti Zaleha Tugiman and also to my sister and brother for their endless love, support and prayers. To those who indirectly contributed in this research, your kindness means a lot to me. Thank you very much.

C

APPROVAL

I certify that an Examination Committee has met on 24th May 2012 to conduct the final examination of Mohd Zulkhairi Bin Azid on his Master of Science thesis entitled Isolation and Bioactivity of Chemical Constituents from Zingiber cassumunar ROXB. and Aglaia oligophylla MIQ. in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the (Name of relevant degree).

Members of the Examination Committee as were as follows:

Mohamad Zaki Ab Rahman, PhD

Professor Centre of Foundation Studies for Agricultural Science Universiti Putra Malaysia (Chairman)

Mawardi Rahmani, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Siti Mariam Mohd Nor, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Nor Hadiani Ismail, PhD

Professor School of Chemistry and Environmental Studies Universiti Teknologi Mara, Puncak Alam, Shah Alam Malaysia (External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Aspollah Hj. Sukari, PhD

Professor Faculty Of Science Universiti Putra Malaysia (Chairman)

Gwendoline Ee Cheng Lian, PhD

Professor Faculty Of Science Universiti Putra Malaysia (Member)

Ahmad Bustamam Abdul, PhD

Associate Researcher UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declared that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution

LIST OF TABLES

Table		Page
4.1	1D and 2D NMR (¹ H (400 MHz) and ¹³ C NMR (100 MHz)) spectral data for <i>cis</i> -3-(3',4'-dimethoxyphenyl)-4-[(<i>E</i>)-3''',4'''-dimethoxystyryl]cyclohex-1-ene (21)	64
4.2	¹ H (400 MHz) and ¹³ C NMR (100 MHz) spectral data for (<i>E</i>)- 4-(3',4'-dimethoxyphenyl)but-3-en-1-ol (12)	82
4.3	1D and 2D NMR: ¹ H (400 MHz) and ¹³ C NMR (100 MHz) spectral data of 3,4-dimethoxybenzoic acid (29)	92
4.4	1D and 2D NMR (¹ H (400 MHz) and ¹³ C (100 MHz)) spectral data for 8-(13,14-dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (20)	104
4.5	¹ H (400 MHz) and ¹³ C NMR (100 MHz) spectral data for β -sitosterol (30)	128
4.6	¹ H (400 MHz) and ¹³ C NMR (100 MHz) spectral data for 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammaran-3-oic acid (77)	141
4.7	1D and 2D NMR spectral data for 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammaran-3-oic acid (77)	142
4.8	¹ H (500 MHz) and ¹³ C NMR (100 MHz) data for 20 <i>S</i> ,24 <i>S</i> - epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (78)	161
4.9	1D and 2D NMR data for 20 <i>S</i> ,24 <i>S</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (78)	162
4.10	1 H (400 MHz) and 13 C NMR (100 MHz) data of silvaglin A (47)	180
4.11	1D and 2D NMR data of silvaglin A (47)	181
4.12	Cytotoxicity activities of crude extracts and isolates from rhizomes of <i>Zingiber cassumunar</i> .	202
4.13	Cytotoxicity activities of crude extracts from stem bark and trunk from <i>Aglaia oligophylla</i>	204

4.14 Antimicrobial activities of crude extracts of *Zingiber* 205 *cassumunar* and *Aglaia oligophylla*

LIST OF FIGURES

Figure		Page
2.1	Zingiber cassumunar (Bonglai)	11
2.2	Aglaia oligophylla (Bekak) collected from Hutan Simpan Ayer Hitam, Puchong	25
4.1	Isolation work on rhizomes of Zingiber cassumunar	59
4.2	Selected HMBC correlations for compound (21)	62
4.3	IR Spectrum of <i>cis</i> -3-(3',4'-dimethoxyphenyl)-4-[(<i>E</i>)-3'",4''-dimethoxystyryl]cyclohex-1-ene (21)	66
4.4	MS Spectrum of <i>cis</i> -3-(3',4'-dimethoxyphenyl)-4-[(<i>E</i>)- 3''',4'''-dimethoxystyryl]cyclohex-1-ene (21)	67
4.5	¹ H NMR Spectrum of <i>cis</i> -3-(3',4'-dimethoxyphenyl)-4-[(<i>E</i>)- 3''',4'''-dimethoxystyry]cyclohex-1-ene (21)	68
4.6	Expansion of ¹ H NMR of <i>cis</i> -3-(3',4'-dimethoxyphenyl)-4- [(<i>E</i>)-3''',4'''-dimethoxystyryl]cyclohex-1-ene (21)	69
4.7	¹³ C NMR spectrum of <i>cis</i> -3-(3',4'-dimethoxyphenyl)-4-[(<i>E</i>)- 3''',4'''-dimethoxystyryl]cyclohex-1-ene (21)	70
4.8	Expansion of ¹³ C NMR spectrum of <i>cis</i> -3-(3', 4'-dimethoxyphenyl)-4-[(E) -3''',4'''-dimethoxystyryl]cyclohex-1-ene (21)	71
4.9	DEPT spectrum of <i>cis</i> -3-(3', 4'-dimethoxyphenyl)-4-[(<i>E</i>)- $3^{""}$,4"'-dimethoxystyryl]cyclohex-1-ene (21)	72
4.10	COSY spectrum of <i>cis</i> -3-(3', 4'-dimethoxyphenyl)-4-[(<i>E</i>)-3''',4'''-dimethoxystyryl]cyclohex-1-ene (21)	73
4.11	Expansion of HMBC spectrum of cis -3-(3',4'-dimethoxyphenyl)-4-[(E)-3''',4'''-dimethoxystyryl]cyclohex- 1-ene (21)	74
4.12	Expansion of HMBC spectrum of <i>cis</i> -3-(3',4'-dimethoxyphenyl)-4-[(<i>E</i>)-3''',4''-dimethoxystyryl]cyclohex-	75

xiv

1-ene (**21**)

4.13	Expansion of HMBC spectrum of cis -3-(3',4'-dimethoxyphenyl)-4-[(E)-3''',4'''-dimethoxystyryl]cyclohex- 1-ene (21)	76
4.14	HMQC spectrum of <i>cis</i> -3-(3', 4'-dimethoxyphenyl)-4-[(<i>E</i>)-3''',4'''-dimethoxystyryl]cyclohex-1-ene (21)	77
4.15	Expansion of HMQC spectrum of <i>cis</i> -3-(3',4'-dimethoxyphenyl)-4-[(<i>E</i>)-3''',4'''-dimethoxystyryl]cyclohex-1-ene (21)	78
4.16	Expansion of HMQC spectrum of <i>cis</i> -3-(3',4'- dimethoxyphenyl)-4-[(<i>E</i>)-3''',4'''-dimethoxystyryl]cyclohex- 1-ene (21)	79
4.17	IR Spectrum of (E) -4- $(3',4'$ -dimethoxyphenyl)but-3-en-1-ol (12)	83
4.18	MS spectrum of (E) -4- $(3',4'$ -dimethoxyphenyl)but-3-en-1-ol (12)	84
4.19	¹ H NMR spectrum of (<i>E</i>)-4-(3',4'-dimethoxyphenyl)but-3- en-1-ol (12)	85
4.20	Expansion of ¹ H NMR spectrum of (E) -4- $(3',4'-dimethoxyphenyl)$ but-3-en-1-ol (12)	86
4.21	Expansion of ¹ H NMR spectrum of (<i>E</i>)-4-(3',4'- dimethoxyphenyl)but-3-en-1-ol (12)	87
4.22	Expansion of ¹ H NMR spectrum of (E) -4- $(3',4')$ -dimethoxyphenyl)but-3-en-1-ol (12)	88
4.23	¹³ C NMR spectrum of (<i>E</i>)-4-(3',4'-dimethoxyphenyl)but-3- en-1-ol (12)	89
4.24	IR spectrum of 3,4-dimethoxybenzoic acid (29)	93
4.25	MS spectrum of 3,4-dimethoxybenzoic acid (29)	94
4.26	¹ H NMR spectrum of 3,4-dimethoxybenzoic acid (29)	95
4.27	¹³ C NMR spectrum of 3,4-dimethoxybenzoic acid (29)	96
4.28	DEPT spectrum of 3,4-dimethoxy benzoic acid (29)	97

4.29	COSY spectrum of 3,4-dimethoxybenzoic acid (29)	98
4.30	HMBC spectrum of 3,4-dimethoxy benzoic acid (29)	99
4.31	Skeleton of naptho-1,4-quinone	101
4.32	IR spectrum of 8-(13,14-dimethoxyphenyl)-2- methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	106
4.33	MS of 8-(13,14-dimethoxyphenyl)-2-methoxynaphto-1,4- quinone (cassumunaquinone 1) (20)	107
4.34	¹ H NMR spectrum of 8-(13,14-dimethoxyphenyl)-2- methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	108
4.35	Expansion of ¹ H NMR of 8-(13,14-dimethoxyphenyl)-2- methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	109
4.36	Expansion of ¹ H NMR spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	110
4.37	Expansion of ¹ H NMR spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	111
4.38	¹³ C NMR spectrum of 8-(13,14-dimethoxyphenyl)-2- methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	112
4.39	Expansion of ¹³ C NMR spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	113
4.40	DEPT spectrum of 8-(13,14-dimethoxyphenyl)-2- methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	114
4.41	Expansion of DEPT NMR spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	115
4.42	COSY spectrum of 8-(13,14-dimethoxyphenyl)-2- methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	116
4.43	Expansion of COSY NMR spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	117

4.44	HMBC spectrum of 8-(13,14-dimethoxyphenyl)-2- methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	118
4.45	Expansion of HMBC spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	119
4.46	Expansion of HMBC spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	120
4.47	Expansion of HMBC spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	121
4.48	HMQC spectrum of 8-(13,14-dimethoxyphenyl)-2- methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	122
4.49	Expansion of HMQC spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	123
4.50	Expansion of HMQC spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	124
4.51	Expansion of HMQC spectrum of 8-(13,14- dimethoxyphenyl)-2-methoxynaphto-1,4-quinone (cassumunaquinone 1) (20)	125
4.52	IR spectrum of β-sitosterol (30)	129
4.53	MS spectrum of β -sitosterol (30)	130
4.54	¹ H NMR spectrum of β -sitosterol (30)	131
4.55	¹³ C NMR spectrum of β -sitosterol (30)	132
4.56	Isolation work on stem bark and trunk of Aglaia oligophylla	134
4.57	Prominent fragment ions of dammarane type triterpenes	136
4.58	Stereochemistry of H-20 and H-24 in shoreic acid and eichlerianic acid	137
4.59	Selected HMBC correlations of compound (77)	139

4.60	Aglasilvinic acid (49)	140
4.61	IR spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (77)	144
4.62	EIMS and HRESIMS spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (77)	145
4.63	¹ H NMR spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2- methoxy-2,3-secodammarane-3-oic acid (77)	146
4.64	Expansion of ¹ H NMR spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25- hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (77)	147
4.65	¹³ C NMR spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2- methoxy-2,3-secodammarane-3-oic acid (77)	148
4.66	Expansion of ¹³ C NMR spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25- hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (77)	149
4.67	DEPT spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (77)	150
4.68	COSY spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2-methoxy- 2,3-secodammarane-3-oic acid (77)	151
4.69	HMBC spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (77)	152
4.70	Expansion of HMBC spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25- hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (77)	153
4.71	NOESY spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2- methoxy-2,3-secodammarane-3-oic acid (77)	154
4.72	HMQC spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (77)	155
4.73	Expansion of HMQC spectrum of 20 <i>S</i> ,24 <i>R</i> -epoxy-25- hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (77)	156
4.74	Selected HMBC correlations of compound (78)	160
4.75	IR spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (78)	164

4.76 MS and HRESIMS spectrums of 20 <i>S</i> ,24 <i>S</i> -epoxy-25- hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (78)		165
4.77	¹ H NMR spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25-hydroxy-2- methoxy-2,3-secodammarane-3-oic acid (78)	166
4.78	Expansion of ¹ H NMR spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25- hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (78)	167
4.79	¹³ C NMR spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25-hydroxy-2- methoxy-2,3-secodammarane-3-oic acid (78)	168
4.80	Expansion of ¹³ C NMR spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25- hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (78)	169
4.81	DEPT spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (78)	170
4.82	COSY spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25-hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (78)	171
4.83	HMBC spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25-hydroxy-2-methoxy- 2,3-secodammarane-3-oic acid (78)	172
4.84	Expansion of HMBC spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25- hydroxy-2-methoxy-2,3-secodammarane-3-oic acid (78)	173
4.85	NOESY spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25-hydroxy-2- methoxy-2,3-secodammarane-3-oic acid (78)	174
4.86	HMQC spectrum of 20 <i>S</i> ,24 <i>S</i> -epoxy-25-hydroxy-2 methoxy-2,3-secodammarane-3-oic acid (78)	175
4.87	Selected HMBC correlations of compound (47)	178
4.88	IR spectrum of silvaglin A (47)	182
4.89	MS spectrum of silvaglin A (47)	183
4.90	HRESIMS spectrum of silvaglin A (47)	184
4.91	¹ H NMR of silvaglin A (47)	185
4.92	Expansion of ¹ H NMR spectrum of silvaglin A (47)	186
4.93	¹³ C NMR spectrum of silvaglin A (47)	187

4.94	Expansion of ¹³ C NMR spectrum of silvaglin A (47)	188
4.95	Expansion of ¹³ C spectrum of silvaglin A (47)	189
4.96	DEPT spectrum of silvaglin A (47)	190
4.97	Expansion of DEPT spectrum of silvaglin A (47)	191
4.98	COSY spectrum of silvaglin A (47)	192
4.99	HMBC spectrum of silvaglin A (47)	193
4.100	Expansion of HMBC spectrum of silvaglin A (47)	194
4.101	Expansion of HMBC spectrum of silvaglin A (47)	195
4.102	HMQC spectrum of silvaglin A (47)	196
4.103	Expansion of HMQC spectrum of silvaglin A (47)	197
4.104	Expansion of HMQC spectrum of silvaglin A (47)	198

C

LIST OF ABBREVIATIONS

α	Alpha
β	Beta
δ	Chemical shift in ppm
^{13}C	Carbon-13
CHCl ₃	Chloroform
°C	Degree in Celcius
CDCl ₃	Deuterated Chloroform
CD ₃ OD	Deuterated Methanol
COSY	Correlated spectroscopy
cm	Centimeter
J	Coupling constant in Hertz
d	Doublet
DEPT	Distortionless Enhancement by Polarisation Transfer
DMSO	Dimethylsulfoxide
EIMS	Electron Impact-Mass Spectroscopy
ESI-MS	Electrospray Ionization-Mass Spectroscopy
EtOAc	Ethyl acetate
G	Gram
GC	Gas-Chromatography
GC-MS	Gas-Chromatography-Mass-Spectroscopy
¹ H	Proton
HMBC	Heteronuclear Multiple Bond Connectivity
HMQC	Heteronuclear Multiple Quantum Correlation
Hz	Hertz
OH	Hydroxy
IC	Inhibition Concentration
IR	Infrared
LC	Lethal Concentration
m/z	Mass per charge
MS	Mass Spectroscopy
MeOH	Methanol
OCH ₃	Methoxy
m.p.	Melting point
ml	Mililiter
Mm	Milimeter
μg	Microgram
μM	Micromolar
mg	Microgram
\mathbf{M}^+	Molecular ion
т	Multiplet
nm	Nanometer
NMR	Nuclear Magnetic Resonance

C

ppm	Part per million
KBr	Potassium Bromide
S	Singlet
t	Triplet
TLC	Thin Layer chromatography
WHO	World Health Organization

LIST OF APPENDICES

Appendix

 \bigcirc

1	Cytotoxic screening data (Table A1) and graph (Figure A1) for crude extracts of <i>Zingiber cassumunar</i> against Human T-lymphoblastic (CEM-SS) cell line.	218
2	Cytotoxic screening data (Table A2) and graph (Figure A2) for crude extracts of <i>Zingiber cassumunar</i> extracts against Human Cervical (HeLa) cell line.	219
3	Cytotoxic screening data (Table A3) and graph (Figure A3) for isolated compounds of <i>Zingiber cassumunar</i> against Human T-lymphoblastic (CEM-SS) cell line.	220
4	Cytotoxic screening data (Table A4) and graph (Figure A4) for isolated compounds of <i>Zingiber cassumunar</i> against Human Cervical (HeLa) cell line	221
5	Cytotoxic screening data (Table A5) and graph (Figure A5) from stem barks of <i>Aglaia oligophylla</i> extracts against Human T-Lymphoblastic (CEM-SS) cell line.	222
6	Cytotoxic screening data (Table A6) and graph (Figure A6) from stem bark of <i>Aglaia oligophylla</i> extracts against Human Cervical (HeLa) cell line	223
7	Cytotoxic screening data (Table A7) and graph (Figure A7) from trunk of <i>Aglaia oligophylla</i> extracts against Human T-Lymphoblastic (CEM-SS) cell line.	224
8	Cytotoxic screening data (Table A8) and graph (Figure A8) from trunk of <i>Aglaia oligophylla</i> extracts against Human Cervical (HeLa) cell line.	225
9	Cytotoxic screening data (Table A9) and graph (Figure A9) for isolated compounds of <i>Aglaia oligophylla</i> against Human T-Lymphoblastic (CEM-SS) cell line	226
10	Cytotoxic screening data (Table A10) and graph (Figure A10) for isolated compounds of <i>Aglaia oligophylla</i> against Human Cervical (HeLa) cell line	227

Page

TABLE OF CONTENTS

			Page
ABSTRACT			i
ABSTRAK			iv
ACKNOWLE	DGEMEN	Т	vii
APPROVAL			ix
DECLARATI	ON		xi
LIST OF TAB	LES		xii
LIST OF FIGU	URES		xiv
LIST OF ABB	REVIATI	ONS	xxi
LIST OF APP	ENDICES		xxiii
CHAPTER			
1	INTRO	DUCTION	1
	1.1	Problem Statements	5
	1.2	Objectives	6
2	LITER	ATURE REVIEW	
	2.1	Zingiberaceae : Previous works on Zingiber species	7
	2.2	Zingiber cassumunar	11
		2.2.1 Phytochemical studies on Zingiber	11
		2.2.2 Biological activity studies on <i>Zingiber</i> <i>cassumunar</i>	16
	2.3	Meliaceae : Previous works on Aglaia	19
	2.4	Aglaia oligophylla	24
		2.4.1 Phytochemical studies on Aglaia oligophyll	a 24
		2.4.2 Biological activities on <i>Aglaia oligophylla</i>	30
3	MATE	RIALS AND METHODS	
	3.1	Instruments	32
		3.1.1 Melting point equipment	32
		3.1.2 Fourier-Transform Infrared Spectroscopy (FT-IR)	32
		3.1.3 Gas Chromatography-Mass Spectrometry (GCMS)	32
		3.1.4 High Resolution Electrospray Ionization Mass (HRESIMS)	33
		3.1.5 Electron Impact Mass Spectrometry (EIMS) 33
		3.1.6 Nuclear Magnetic Resonance (NMR)	34
		3.1.7 Polarimeter	34
	3.2	Chromatographic Method	34
		3.2.1 Radial Chromatography (Chromatotron)	35
		3.2.2 Thin Layer Chromatography (TLC)	36

3.3	Experimental Method			
	3.3.1	Plants Materials	36	
	3.3.2	Extraction	37	
	3.3.3	Separation and Purification	37	
3.4	Isolation of chemical constituents from rhizomes of		39	
	Zingiber cassumunar			
	3.4.1	Isolation of cis-3-(3',4'-dimethoxyphenyl)-4-	40	
		[(<i>E</i>)-3''',4'''-dimethoxystyryl]cyclo-hex-1-ene		
		(21)		
	3.4.2	Isolation of (<i>E</i>)-4-(3',4'-dimethoxyphenyl)	41	
		but-3-en-1-ol (12)		
	3.4.3	Isolation of 3,4-dimethoxybenzoic acid (29)	42	
	3.4.4	Isolation of 8-(13,14-dimethoxyphenyl)-2-	44	
		methoxynaphto-1,4-quinone (20)		
	3.4.5	Isolation of β -sitosterol (30)	46	
3.5	Isolatio	n of chemical constituents from stem bark of	48	
	Aglaia	olig <mark>ophylla</mark>		
	3.5.1	Isolation of 20S,24R-epoxy-25-hydroxy-2-	48	
	0.5.0	methoxy-2,3-secodammarane-3-oic acid (77)	50	
	3.5.2	Isolation of 205,245-epoxy-25-hydroxy-2-	50	
24	T 1	methoxy-2,3-secodammarane-3-oic acid (78)	50	
3.6	Isolatio	n of chemical constituents from trunk of	52	
	Aglaia oligophylla			
27	3.0.1 Diogen	Isolation of silvagin A (47)	57 2	
5.7	2 7 1	Cytotoxic screening	54 54	
	3.7.1 3.7.2	Antimicrobial activity	55	
	373	Larvicidal activity	56	
	5.1.5		50	
RESUL	TS AND	DISCUSSION		
4.1	Extraction and isolation of chemical constituents			
	from rhizomes of Zingiber cassumunar			
	4.1.1	Characterization of <i>cis</i> -3-(3',4'-	60	
		dimethoxyphenyl)-4-[(E)-3"',4"'-		
		dimethoxystyryl]cyclo-hex-1-ene (21)		
	4.1.2	Characterization of	80	
		(E)-4-(3',4'-dimethoxphenyl)but-3-en-1-ol		
		(12)		
	4.1.3	Characaterization of	90	
		3,4-dimethoxybenzoic acid (29)		
	4.1.4	Characterization of	100	
		8-(13,14-dimethoxyphenyl)-2-		
		methoxynaphto-1,4-quinone (20)		
	4.1.5	Characterization of β -sitosterol (30)	126	
4.2	Extraction and isolation of chemical constituents			
	trom st	em bark and trunk of Aglaia oligophylla	105	
	4.2.1	Characterization of	135	

4

C

xxv

		20 <i>S</i> ,24 <i>R</i> -epoxy-25-hydroxy-2-methoxy-2,3- secodammarane-3-oic acid (77)			
	4.2.2	Characterization of	157		
		20S,24S-epoxy-25-hydroxy-2-methoxy-2,3-			
		secodammarane-3-oic acid (78)			
	4.2.3	Characterization of silvaglin A (47)	176		
4.3	Bioassa	Bioassay screening			
	4.3.1	Cytotoxic Activity of Isolates of Zingiber cassumunar	200		
	4.3.2	Cytotoxic Activity of Isolates of Aglaia oligophylla	203		
	4.3.3	Antimicrobial and Antifungal Activity	205		
	4.3.4	Larvicidal Activity	207		
CON	CLUSION	S	208		
CES			212		
ES			218		
OF STUDENT					
BLICATIONS/					

REFERENCES APPENDICES BIODATA OF STUDENT LIST OF PUBLICATIONS/ PROCEEDINGS

5