UNIVERSITI PUTRA MALAYSIA

ISOLATION AND CHARACTERIZATION OF LACTIC ACID BACTERIA FROM GASTROINTESTINAL TRACT OF SNAKEHEAD (Channa striatus, Bloch) AS PROBIOTIC FOR FRESHWATER FISH

SEYED KAMALEDIN ALLAMEH

IB 2012 5
ISOLATION AND CHARACTERIZATION OF LACTIC ACID BACTERIA FROM GASTROINTESTINAL TRACT OF SNAKEHEAD
(Channa striatus, Bloch) AS PROBIOTIC FOR FRESHWATER FISH

BY
SEYED KAMALEDDIN ALLAMEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

June 2012
In the name of God

“From water everything is alive”
(Quran, Sourah: Al-Anbiya, Vers: 30)
DEDICATION

To all teachers and researchers
Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ISOLATION AND CHARACTERIZATION OF LACTIC ACID BACTERIA FROM GASTROINTESTINAL TRACT OF SNAKEHEAD (Channa striatus, Bloch) AS PROBIOTIC FOR FRESHWATER FISH

By

SEYED KAMALEDDIN ALLAMEH

June 2012

Chairman: Associate Professor Hassan bin Hj. Mohd. Daud, PhD

Faculty/Institute: Institute of Bioscience

The intensive application of antibiotics to prevent and control the bacterial diseases in aquaculture has resulted in development of antibiotic-resistant bacteria. Therefore, probiotics as an alternative strategy have been suggested to be used as replacement for antimicrobial drugs and growth promoters. Lactic acid bacteria (LAB) constitute a group of G+ve bacteria with a high ability to produce antibacterial compounds and improve fish performance which makes them excellent probiotics. In the present study, snakehead (Channa striatus), an indigenous commercial freshwater fish in Southeast Asia countries was chosen for the isolation of LAB. Isolates obtained on de Man Rogosa and Sharp (MRS) agar and broth showed 27 and 9 pure isolates from the fingerling and adults fishes, respectively. According to the antagonistic plate test against Aeromonas hydrophila as a main freshwater fish pathogen, five LABs i.e. three isolates from the fingerlings and two from the adults that showed the greatest inhibition zone were selected. The selected LABs were identified as Aerococcus
viridans, Lactobacillus delbreuckii sp. delbreuckii and Enterococcus faecalis from fingerlings and Lactobacillus fermentum and Leuconostoc mesenteroides sp. mesenteroides from adult fish. Probiotic property evaluation of LAB candidates showed that they could survive and grow at pH 3 up to 8 (P < 0.05). They could also tolerate bile salt concentrations from 0.0 to 0.3% (P < 0.05). The LABs were active at different levels of NaCl (0.0 to 4%) and also, at various temperatures ranging from 15 °C to 45 °C, but showed no growth at 10 °C and 50 °C. Antagonistic effects against three tested fish pathogens i.e. A. hydrophila, Pseudomonas aeruginosa and Shewanella putrefaciens indicated that En. faecalis, L. fermentum and Leu. mesenteroides sp. mesenteroides had the highest inhibition activities. The antibiotic sensitivity test showed that En. faecalis had more antibiotic’s resistance property against some antibiotics as compared to other LAB (P < 0.05). According to probiotic characterization as screening, En. faecalis, L. fermentum and Leu. mesenteroides were selected for in vivo experiments. The viability of LABs in feed stored at 4 °C was higher than 25 °C during four weeks storage. Significant increased of the LAB proportion was observed in the fish intestine fed LAB-fortified diets as compared to the control group (P < 0.05). In addition, the lower G-ve bacteria population in the fish intestine was observed for experimental groups as compared to the control group. Effects of mono and multi-species of LAB candidates on the body composition of Javanese carp (Puntius gonionotus) indicated that LAB-fortified diets could not seriously affect the chemical composition of experimental fish carcasses. The survivability was the same for all experimental groups. The concentration of 10⁷ cfu/g diets was overall more effective than 10⁵ and 10⁹ cfu/g diets. The use of En.
faecalis as probiotic had more positive effects than L. fermentum and Leu. mesenteroides on growth, feed conversion ratio, specific growth rate, and protein efficiency ratio (P < 0.05). Moreover, the use of En. faecalis resulted in an increase in the production of protease and lipase enzymes in the digestive tract of Javanese carp. Results obtained from the short chain fatty acid determination which included acetate, propionate and butyrate showed that treated group with En. faecalis could significantly (P < 0.05) enhance the propionate and butyrate production as compared to the control. An in vivo challenge test of A. hydrophila as a fish pathogen with En. faecalis as a probiotic on Javanese carp indicated that this probiotic could protect the fish against A. hydrophila and showed a higher survivability compared to the control. The presence of En. faecalis in the diet could affect immune response to enhance the antibody level as a humoral response. The fish treated with a LAB-fortified diet (En. faecalis) and added pathogen (A. hydrophila) into the water showed the highest antibody level as compared to the control group (P > 0.05). In conclusion, LABs can be normal microbiota in the gastrointestinal tract of the snakehead. In addition, the use of En. faecalis as a probiotic had positive effects on overall fish performance, digestive enzymes and short chain fatty acid production, survivability in challenge with pathogen and increased humoral immune response in Javanese carp. This LAB as an environmental friendly agent can be suggested as an alternative to antibiotics in freshwater fish culture.
PEMENCILAN DAN PENCIRIAN BAKTERIA ASID LAHTIK DARI SALURAN GASTROUSUS IKAN HARUAN (*Channa striatus*, Bloch 1793) SEBAGAI PROBIOTIK UNTUK IKAN AIR TAWAR

Oleh

SEYED KAMALEDDIN ALLAMEH

Jun 2012

Pengerusis: Prof. Madya Hassan bin Hj. Mohd. Daud, PhD

Fakulti/Institut: Institut Biosains

Penggunaan antibiotik secara intensif bagi mengelak dan merawat penyakit bakteria dalam akuakultur telah menyebabkan terjadinya bakteria yang rentang antibiotik. Oleh itu probiotik adalah strategi alternatif yang telah disyorkan sebagai pengganti kepada dadah antimikrobe, penggalak pertumbuhan dan peransang imuniti. Bakteria asid laktik (BAL) terdiri dari kumpulan bakteria G+ve yang mempunyai ciri morfologikal, metabolik dan fisiologi yang menjadikan mereka probiotik yang amat baik. Di dalam kajian ini, ikan haruan (*Channa striatus*), sejenis ikan tempatan berkomersial di negara Asia Tenggara telah dipilih untuk pemencilan BAL. Percambahan koloni di atas agar de Man Rogosa and Sharp (MRS) dan kaldu memperolehi 27 isolat tulin dari ikan bersaiz jari dan sembilan dari ikan dewasa. Keputusan menunjukkan beberapa BAL yang lazim dalam perut dan saluran usus kedua-dua sais ikan. Mengikut ujian plat antagonis melawan *Aeromonas hydrophila*.
sebagai patogen ikan, lima BAL yakni tiga isolat dari ikan bersaiz jari dan dua dari ikan dewasa menunjukkan zon kesekatlakuan terbesar. Isolat tersebut dikenalpasti sebagai *Aerococcus viridans*, *Lactobacillus delbreuckii* sp. *delbreuckii* dan *Enterococcus faecalis* dari ikan bersaiz jari, dan *Lactobacillus fermentum* dan *Leuconostoc mesenteroides* sp. *mesenteroides* dari ikan dewasa. Penilaian sifat-sifat calon probiotik BAL menunjukkan bahawa mereka boleh hidup dan tumbuh pada pH 3 sehingga pH 8 (P < 0.05). Mereka juga boleh tahan dalam garam hampedu dari kepekatan 0.0 ke 0.3% (P < 0.05). BAL aktif pada beberapa paras NaCl berlainan (0.0 to 4%) dan juga pada suhu berjulat dari 15 °C to 45 °C, tetapi tiada pertumbuhan pada 10 and 50 °C. Kesan antagonis terhadap tiga patogen ikan iaitu *A. hydrophila*, *Pseudomonas aeruginosa* and *Shewanella putrefaciens* menunjukkan *En. faecalis*, *L. fermentum* dan *Leu. mesenteroides* sp. *mesenteroides* mempunyai aktiviti kesekatlakuan tertinggi. Ujian kepekaan antibiotic menunjukkan *En. faecalis* mempunyai lebih banyak kerentangan terhadap beberapa antibiotik dibandingkan dengan LAB lain (keertian pada P < 0.05). Berdasarkan pencirian probiotik, *En. faecalis*, *L. fermentum* and *Leu. mesenteroides* telah dipilih untuk eksperimen in vivo. BAL terpilih dengan kesan keertian (P < 0.05) menunjukkan kebolehidupan tinggi dalam diet disimpan pada 4 °C and 25 °C. Tambahkan lagi, BAL juga dapat merendah percambahan populasi bakteria G-ve dalam saluran gastrousus. Pertambahan yang bererti BAL dapat dilihat dalam usus (P < 0.05). Kesan calon BAL secara tunggal dan pelbagai terhadap komposisi badan ikan lampam jawa (*Puntius gonionotus*) menunjukkan bahawa diet yang ditambah dengan BAL tidak memberi kesan jelas terhadap ke atas komposisi kimia karkas ikan ujian. Selain itu tiada kematian yang
dilihat. Oleh itu BAL yang dipilih adalah tidak berbahaya dan tidak memberi kesan sampingan terhadap ikan ujian. Diet berkepekatan 10^7 cfu/g pada keseluruhannya adalah lebih efektif dari kepekatan 10^5 dan 10^9 cfu/g. Walaubagaimana pun, data yang diperolehi menunjukkan penggunaan En. faecalis sebagai probiotik memberi lebih kesan positif dari L. fermentum and Leu. mesenteroides terhadap pertumbuhan, nisbah pertukaran makanan, kadar pertumbuhan tentu dan nisbah kecekapan protein (keertian pada P < 0.05). Tambahan lagi, penggunaan En. faecalis sebagai probiotik menyebabkan peningkatan pengeluaran enzim protease dan lipase dalam saluran penghadaman ikan lampam jawa (P. gonionotus). Juga bakteria ini lebih efektif merembeskan enzim protease dari lipase. Keputusan dari penentuan asid lemak berantai pendek termasuk asetat, propionat dan butirat menunjukkan kumpulan yang dirawat dengan En. faecalis boleh, secara bererti (P < 0.05) meningkatkan pengeluaran propionat and butirat berbanding dengan kawalan. Ujian cabaran in vivo A. hydrophila sebagai patogen ikan dengan En. faecalis sebagai probiotik ke atas lampam jawa menunjukkan probiotik ini boleh melindungi dari jangkitan dan menunjukkan kesan penghalang yang efektif terhadap patogen ini. Keputusan dari gerak balas sistem imun menunjukkan kehadiran En. faecalis dalam diet boleh merangsang gerak balas peningkatan paras antibodi sebagai keimunun humoral. Kumpulan ikan dengan diet yang ditambah dengan BAL dan bersama patogen (A. hydrophila) dalam air menunjukkan paras antibodi tertinggi berbanding dengan kawalan (P > 0.05). Pada kesimpulannya, BAL boleh menjadi mikrobiota normal dalam saluran gastrousus ikan haruan. Tambahan lagi, penggunaan En. faecalis sebagai probiotik memberi kesan positif ke atas keseluruhan perkembangan ikan.
enzim pencernaan dan pengeluaran asid lemak berantai pendek, kemandirian dalam cabaran dengan patogen dan peningkatan ransangan imun humoral di lampam jawa. Bakteria asid laktik ini sebagai satu agen yang mesra alam boleh disyorkan sebagai alternatif kepada penggunaan antibiotik dalam kultur ikan air tawar.
ACKNOWLEDGMENTS

First of all, we really must be grateful to God, who provide everything and opportunities to mankind and also someone’s that deliver beneficences to man.

I would like to thank Prof. Datin Paduka Dr. Aini Ideris, the Deputy Vice Chancellor of UPM who honestly and modestly helped me to start my education in UPM and introduced me to Prof. Dr. Fatimah Md. Yusoff of IBS, who is one of the best lecturers in UPM.

I would like to record my gracious thank to my very pleasant supervisor, Assoc. Prof. Dr. Hassan bin Hj. Mohd. Daud, who is a practical scientific man and provided laboratory equipments, materials and guidance to perform the high quality research.

I should appreciate Prof. Dr. Fatimah Md. Yusoff, who as a supervisor and co-supervisor completely supported me to solve the problems during my education and conducted the successful research.

I would like to thank Assoc. Prof. Dr. Che Roos Saad, whose guidance helped me to do the research easily.

I really should appreciate one of the best friends of mine, Dr. Hassan Moeini, who honestly and strongly helped me; without his support and guidance I would not be able to perform all those experiments.

I would like to show gratitude to Dr. Sanjoy Banerjee and Dr. Helena Khatoon, who helped me to carry out the experiments in the lab.

I would like to thank Mr. Perumal Kuppan, who is hard working and always tries to solve student’s problems in the Institute of Bioscience.
I should appreciate Ali Baradaran and Mahdi Ebrahimi, who helped me for laboratory work.

There are many people who influenced my research, during these past few years. It is not possible to mention all of them here, but I am grateful for all for their help and untiring support in Aquatic Animal Health Unit, Faculty of Veterinary Medicine, Institute of Bioscience, and Animal Science Department of Faculty of Agriculture. Finally, much appreciation to my family for their supports and patience.

Lastly, even though there are many hardships on our way to scientific career, it feels great to Learn, Know and Understand.
I certify that a Thesis Examination Committee has met on 20 June 2012 to conduct the final examination of Seyed Kamaleddin Allameh on his thesis entitled “Isolation and Characterization of Lactic Acid Bacteria from Gastrointestinal Tract of Snakehead (Channa striatus, Bloch) as Probiotic for Freshwater Fish” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Abdul Rahman bin Omar, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohamed Ali bin Rajion, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Abdul Razak bin Alimon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Einar Ringø, PhD
Professor
University of Tromsø, Norway
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Hassan Mohd. Daud, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Fatimah Md. Yusoff, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Member)

Datin Paduka Aini Ideris, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Che Roos Saad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

__BUJANG BIN KIM HUAT, PhD__
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

SEYED KAMALEDIN LLAMEH

Date: 20 June 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

<table>
<thead>
<tr>
<th>1</th>
<th>INTRODUCTION</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Background of study</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Hypothesis</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Objectives</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>LITERATURE REVIEW</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Snakehead fish (Channa striatus)</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Development of the fish gastrointestinal tract</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Microorganisms in fish</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Development of probiotic definition</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Mechanisms of action of probiotics</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Lactic acid bacteria (LAB)</td>
<td>13</td>
</tr>
<tr>
<td>2.8</td>
<td>Isolation of LAB from aquatic animals</td>
<td>15</td>
</tr>
<tr>
<td>2.9</td>
<td>Probiotic criteria</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Characterization of lactic acid bacteria</td>
<td>18</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Importance of acid and bile salt tolerance</td>
<td>19</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Growth of LAB at different NaCl and temperatures</td>
<td>20</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Antagonistic effect against fish pathogen and antibiotic sensitivity</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>Colonization of bacteria in intestine</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>Effects of probiotics on fish performance</td>
<td>24</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Growth</td>
<td>24</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Feed conversion ratio (FCR)</td>
<td>26</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Protein efficiency ratio (PER)</td>
<td>26</td>
</tr>
<tr>
<td>2.12.4</td>
<td>Digestibility</td>
<td>27</td>
</tr>
<tr>
<td>2.12.5</td>
<td>Body composition</td>
<td>28</td>
</tr>
<tr>
<td>2.13</td>
<td>Immune system response</td>
<td>29</td>
</tr>
</tbody>
</table>
2.14 Pathogenicity and challenge

3 ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA FROM THE STOMACH AND INTESTINE OF FINGERLING AND ADULT SNAKEHEADS (Channa striatus)

3.1 Introduction

3.2 Materials and Methods
 3.2.1 Sampling
 3.2.2 Isolation of LAB from fingerlings
 3.2.3 Isolation of LAB from adult fish
 3.2.4 Making stock from the isolated LABs
 3.2.5 Selection of the isolates by antagonistic test
 3.2.6 Identification of selected LABs
 3.2.7 Statistical analysis

3.3 Results
 3.3.1 Total colony count of bacteria in stomach and intestine
 3.3.2 Isolation of lactic acid bacteria from GI tract
 3.3.3 Selection of the isolates by antagonistic test
 3.3.4 Identification of selected LABs

3.4 Discussion
 3.4.1 Total colony count of bacteria from the stomach and intestine of fingerling and adult snakeheads
 3.4.2 Isolation of LABs from GI tract of fingerling and adult snakeheads
 3.4.3 Identification of the selected LAB

3.5 Conclusion

4 PROBIOTIC PROPERTIES OF LACTIC ACID BACTERIA ISOLATED FROM SNAKEHEAD (Channa striatus)

4.1 Introduction

4.2 Materials and Methods
 4.2.1 pH tolerance test
 4.2.2 Bile salt tolerance test
 4.2.3 Growth at different NaCl concentrations
 4.2.4 Growth at different temperatures
 4.2.5 Antagonistic effect test against fish pathogens
 4.2.6 Antibiotic sensitivity test
 4.2.7 Statistical analysis

4.3 Results
 4.3.1 pH tolerance test
 4.3.2 Bile salt tolerance test
 4.3.3 Growth at different NaCl concentrations
 4.3.4 Growth at different temperatures
 4.3.5 Antagonistic effect against fish pathogens
4.3.6 Antibiotic sensitivity test

4.4 Discussion

4.4.1 pH and bile salt tolerance
4.4.2 Growth at different NaCl concentrations and temperature
4.4.3 Antagonistic effect against fish pathogens and antibiotic sensitivity tests

4.5 Conclusion

5 EFFECT OF MONO AND MULTI-SPECIES OF SELECTED LACTIC ACID BACTERIA AS PROBIOTICS ON THE GROWTH PARAMETERS AND BODY COMPOSITION OF JAVANESE CARP (Puntius gonionotus)

5.1 Introduction

5.2 Materials and Methods

5.2.1 Experimental design
5.2.2 Preparation of experimental diets
5.2.3 Viability of LAB in diet
5.2.4 Survival of the LAB in the GI tract and their controlling effects on the population of Gram-negative bacteria in the experimental fishes
5.2.5 Body composition of fishes
5.2.6 Calculated parameters
5.2.7 Statistical analysis

5.3 Results

5.3.1 Viability of LAB in diet
5.3.2 Survival of the LAB in the GI tract and their controlling effects on the population of Gram-negative bacteria in the experimental fishes
5.3.3 Body composition of fish
5.3.4 Growth parameters

5.4 Discussion

5.4.1 Viability of LAB in diet
5.4.2 Survival of the LABs in the GI tract and their controlling effects on the population of Gram-negative bacteria in the experimental fishes
5.4.3 Growth parameters

5.5 Conclusion

6 DETERMINATION OF DIGESTIVE ENZYMES AND SHORT CHAIN FATTY ACID PRODUCTION FROM THE INTESTINE OF JAVANESE CARP (Puntius gonionotus) TREATED WITH Enterococcus faecalis AS PROBIOTIC

6.1 Introduction

6.2 Materials and Methods

6.2.1 Experimental design
6.2.2 Detection of digestive enzymes in the fish intestine 112
6.2.3 Short chain fatty acid determination in the fish intestine 116
6.2.4 Statistical analysis 117
6.3 Results 118
 6.3.1 Protease and lipase activities in the fish intestine 118
 6.3.2 Short chain fatty acid production in the fish intestine 118
6.4 Discussion 119
 6.4.1 Protease and lipase enzymes determination 119
 6.4.2 Short chain fatty acid assays 121
6.5 Conclusion 122

7 CHALLENGE TEST WITH FISH PATHOGEN AND EVALUATION OF Enterococcus faecalis ON IMMUNE SYSTEM RESPONSE OF JAVANESE CARP (Puntius gonionotus) 123
7.1 Introduction 123
7.2 Materials and Methods 125
 7.2.1 Challenge test with fish pathogen 125
 7.2.2 Evaluation of the immune system response 127
 7.2.3 Statistical analysis 130
7.3 Results 130
 7.3.1 Effects of challenge test with fish pathogen on experimental fishes 130
 7.3.2 Humoral immune response evaluation 132
7.4 Discussion 133
 7.4.1 Challenge test 133
 7.4.2 Humoral immune response evaluation 135
7.5 Conclusion 136

8 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 138
8.1 Summary 138
8.2 General conclusion 139
 8.2.1 Isolation, selection and identification of LAB 139
 8.2.2 Probiotic properties of selected LABs 140
 8.2.3 Effects of mono and multi species of selected LABs on rearing parameters 140
 8.2.4 Effects of candidate probiotic on digestive enzyme and short chain fatty acid 141
 8.2.5 Effect of candidate probiotic on survival in the challenge test and immune system response 142
8.3 Recommendation for future research 143

REFERENCES 144
APPENDIX 155