METHANE EMISSION AND ITS MITIGATION IN RICE FIELDS UNDER DIFFERENT MANAGEMENT PRACTICES IN CENTRAL JAVA

By

PRIHASTO SETYANTO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2004
I Would Like to Dedicate This Thesis to My Respected Parents
Dr. Achmad Mudzakkir Fagi and Aniek Tuti Rochiani
And
My Beloved Wife for Her Patience and Support, Andriana Nurvianti
Dearest Sons, Raihan Abirega Fagi and Rafid Adrianto Fagi
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

METHANE EMISSION AND ITS MITIGATION IN RICE FIELDS UNDER
DIFFERENT MANAGEMENT PRACTICES IN CENTRAL JAVA

By

PRIHASTO SETYANTO

August 2004

Chairman : Associate Professor Rosenani Abu Bakar, Ph.D.
Faculty : Agriculture

The concentration of methane (CH₄), one of the greenhouse gases in the atmosphere is
increasing at 1% per annum and rice soil is one of the sources that contribute to about
25% of the atmospheric CH₄. This study was conducted with the objectives of (i)
assessing CH₄ emission from rice fields with various rice management practices in
Central Java, Indonesia, (ii) identifying potential mitigation methods by taking into
consideration the economic analysis of these methods, and (iii) determining the potential
CH₄ production and emission from rice soils of Central Java using laboratory incubation
method and in-situ field measurements. Field experiments were conducted to investigate
the effects of rice cultivars (Memberamo, Cisadane, IR 64 and Way Apo Buru), water
management (continuous flooding 5 cm, continuous flooding 1 cm, intermittent
irrigation, and pulse irrigation), and crop establishment methods (direct seeding and
transplanting) on CH₄ emissions using automatic chamber and continuous sampling
technique. These experiments were conducted in four seasons beginning in the wet
season of 2001/02 and ended in the dry season of 2003. In determining the potential
CH₄ production and emission from rice field of Central Java, soil types under rice were
identified. In-situ measurements of CH$_4$ fluxes from 13 soil types under rice were made and topsoil samples were incubated for laboratory incubation.

There were no significant differences between cultivars in yield either through direct seeding or transplanting. Cisadane cultivar established through direct seeding emitted significantly higher amount of CH$_4$ due to higher root and aboveground biomass than transplanting. Since no significant differences in yield between the cultivars were found in this study, Cisadane cultivar should not be used in Central Java. Emission of CH$_4$ could also be reduced by intermittent (46%) and pulse (62%) irrigation compared to conventional continuously flooded systems. Potential CH$_4$ production (282 – 6,408 kg ha$^{-1}$) for 13 flooded rice soils in Central Java Province was significantly positively related to the in-situ field emission (107 – 799 kg ha$^{-1}$). Measured CH$_4$ emission estimated was only 16.6% of the potential CH$_4$ production.

Based on economic analysis of selected data from the field experiments, a few mitigation options could be recommended. During the wet season, for transplanted rice, Way Apo Buru gave the higher incremental benefit of CH$_4$ mitigation technology adoption, but for direct seeded rice, Memberamo and Way Apo Buru gave the higher benefit. During the dry season, transplanted Cisadane cultivar gave higher benefit than IR 64. Also, during this season, when planted with IR 64, intermittent irrigation gave higher benefit than continuous flooding 1 cm and pulse irrigation. However, further investigation on the mitigation potentials of the management practices need to be done.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

EMISI METANA DAN MITIGASINYA DARIPADA KAWASAN SAWAH PADI MELALUI PERBEZAAN PENGURUSAN TANAMAN DI JAWA TENGAH

Oleh

PRIHASTO SETYANTO

Ogos 2004

Penyelia : Profesor Madya Rosenani Abu Bakar, Ph.D.

Fakulti : Pertanian

Kepekatan gas metana (CH$_4$), yang merupakan salah satu daripada gas rumah hijau, meningkat pada kadar 1% setahun dan sawah padi merupakan salah satu sumber yang menyumbang 25% keseluruhan kepekatan CH$_4$ di atmosfera. Objektif daripada kajian ini adalah (i) untuk menilai kepelbagaian amalan pengurusan tanaman terhadap pelepasan CH$_4$ di Jawa Tengah, Indonesia, (ii) mengenalpasti potensi kaedah mitigasi dan mengambil kira analisis ekonomi bagi kaedah tersebut, dan (iii) untuk mengenalpasti potensi penghasilan dan emisi CH$_4$ daripada sawah padi di Jawa Tengah dengan kaedah inkubasi dan pengukuran secara terus di sawah padi. Kajian lapangan dilakukan untuk mengetahui pengaruh (i) varieti tanaman padi (Memberamo, Cisadane, IR 64 dan Way Apo Buru), (ii) pengurusan pengairan (pengairan berterusan 5 cm, pengairan berterusan 1 cm, pengairan berselang, dan pengairan terputus), dan (iii) cara penanaman padi (tabur terus dan tanam pindah) terhadap pelepasan CH$_4$ dengan menggunakan alat pengumpul gas automatik dan teknik persampelan secara berterusan. Kajian ini dilaksanakan selama empat musim bermula pada musim hujan 2001/02 dan berakhir pada musim kemarau 2003. Dalam mengenalpasti potensi penghasilan dan emisi gas CH$_4$ daripada sawah padi di Jawa Tengah, jenis tanah sawah dikenalpasti.
Pengukuran terus CH$_4$ fluks daripada 13 tanah sawah yang berbeza dilakukan dan bahagian atas daripada tanah diinkubasi di makmal.

Tidak terdapat perbezaan diantara varieti padi yang diuji dalam menghasilkan padi daripada cara tabur terus atau tanam pindah. Cisadane dengan tabur terus melepaskan CH$_4$ dalam jumlah yang paling banyak kerana jumlah akar dan biomas bahagian atas pokok padi lebih tinggi daripada cara tanam pindah. Ini menyebabkan varieti Cisadane tidak sesuai ditanam di Jawa Tengah. Pelepasan CH$_4$ dapat juga dapat dikurangkan dengan cara pengairan berselang (46%) dan pengairan terputus (62%) jika dibandingkan dengan pengairan berterusan. Potensi penghasilan CH$_4$ (282 - 6408 kg ha$^{-1}$) daripada 13 jenis tanah sawah padi di Jawa Tengah adalah sangat berkaitan dengan pelepasan secara terus (136 - 799 kg CH$_4$ ha$^{-1}$) dari kawasan padi sawah. Pelepasan CH$_4$ secara terus adalah hanya 16.6% daripada potensi penghasilan dari dalam tanah.

Beberapa kaedah mitigasi dapat dicadangkan berdasarkan analisis ekonomi daripada data terpilih hasil kajian lapangan. Pada musim hujan, dengan cara tanam pindah, Way Apo Buru memberikan keuntungan tertinggi apabila kaedah mitigasi diterapkan, tetapi untuk cara tanam tabur terus, Memberamo dan Way Apo Buru memberi keuntungan tertinggi. Pada musim kemarau pula, Cisadane ditanam dengan cara tabur terus memberikan keuntungan tertinggi dibandingkan dengan IR 64. Selain itu, pada musim ini juga, apabila ditanam dengan IR 64, kaedah pengairan berselang memberikan keuntungan tertinggi daripada pengairan berterusan 1 cm dan pengairan terputus. Kajian lain untuk melihat potensi mitigasi daripada pengurusan tanaman perlu dilakukan.
ACKNOWLEDGEMENTS

I wish to express my profound gratitude to the Chairman of the Supervisory Committee, Associate Professor Datin Dr. Rosenani Abu Bakar, and Co-Chairman of the Supervisory Committee Professor Dr. Mohd. Khanif Yusop, Associate Professor Dr. Che Fauziah Ishak and Dr. Rizaldi Boer for their scholastic and active guidance, valuable advice, and encouragement during the research work and preparation of this dissertation.

I gratefully acknowledge the Project Manager of PAATP (Participatory Development of Agricultural Technology Project), IAARD (Indonesia Agency of Agricultural Research and Development), Department of Agriculture, Republic of Indonesia for the scholarship and the opportunity given to me in pursuing my postgraduate program at the Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia.

The author wishes to express his grateful appreciation to Mr. Johari Sasa, as the former Head of Research Station for Agricultural Environment Preservation (RESAE) at Jakenan, for his permission to use the experimental field and facility, and also I expressed my appreciation to the new head of RESAE, Mr. Husein Suganda, for giving me the opportunity to continue the experiments at the experimental farm. I deeply appreciate the help I received from Ms. Suharsih, and Titi Sopaiawati; without their help in monitoring the continuous working of the CH₄ auto sampling and data handling, I probably could not have finished my work on time. Given this opportunity, I also would like to extend my deep appreciation to Jumari, Yarpani, Sudarmin, Suyoto and Suryanto.
for helping with the field setup, data recording in the field, and laboratory activities. Without their help it would be impossible for me to conduct the experiment. This thesis would not have been possible without their support.

I would like to express special thanks to the technical staffs and research assistants of soil chemistry laboratory of Land Management Department, Faculty of Agriculture UPM; Zila, Kak Farida, Kak Rusnah, Kak Umi, Sabri, Abid, and Liza; I thanked them for doing the following activities with me; in-lab party, chatting, joking, cooking and, gossiping..hi..hi..hi, it was good fun.

To the Indonesian student association especially my friends at UPM tennis court; Dr. Prama, Arif, Darius, Siswanto, Dr. Misnawi, Dr. Budiatman, Arifin, Zulkifli, and to all other members, my grateful thanks to them for the joyful time practicing tennis together.

I would like also to express my gratitude to my close friends at Serdang; Eni, Emi, Mirna, Taufik, Edi, Cholil, Saleh, Wijo, and Margono. Our discussion about life and experience made me wiser by knowing other people’s thought and opinions. To my family at No. 9 Jln. 5/2 Serdang Jaya; Abah Bujang Nuli and Ibu Anggraeni Ranim, where I stayed since the first semester of my PhD study at UPM; thank you very much for providing me a nice, small and clean room, and also sadness and happiness that both of you always share with me. Thanks also for taking care of me like your own son. I would not forget your kindness.
Last but not least, I would like to express my deepest thanks to my beloved wife, Andriana Nurvianti, my handsome sons Raihan Abirega Fagi and Rafid Adrianto Fagi, my father Dr. Achmad Mudzakkir Fagi, my mother Aniek Tuti Rochiani, and my sisters Dyah Pitaloka, Sri Endang Wijayanti and Angelita Pujilestari for their encouragement, patience, moral support and inspiration given to me during the period of my study in Malaysia. I would like to express my deepest thanks to my mother in law, Indah Mulyanti, for taking care of my wife and sons since the first time I took my post graduate study at UPM. And above all, Allah SWT, the Most Gracious and Merciful who gave me the strength to complete the work and made all things well.
I certify that an Examination Committee met on August 10, 2004 to conduct the final examination of Prihasto Setyanto on his Doctor of Philosophy thesis entitled “Methane Emission and its Mitigation in Rice Fields under Different Management Practices in Central Java” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Aminuddin Hussin, Ph.D.
Associate Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Chairman)

Mohd. Hanafi Musa, Ph.D.
Associate Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Member)

Anuar Abdul Rahim, Ph.D.
Associate Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Member)

Kazuyuki Inubushi, Ph.D.
Professor
Graduate School of Science and Technology
Chiba University, Japan
(Member)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Rosenani Abu Bakar, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd. Khanif Yusop, Ph.D.
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Che Fauziah Ishak, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Rizaldi Boer, Ph.D.
Department of Geophysics and Meteorology
Faculty of Mathematics and Natural Sciences
Bogor Agricultural University
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

PRIHASTO SETYANTO

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 The Greenhouse Gas and Global Warming

2.2 Effect of Climate Change

2.2.1 Sea level rise and coastal zones

2.2.2 Impacts on food and fiber production

2.2.2.1 Agriculture

2.2.2.2 Fisheries

2.2.2.3 Forestry

2.2.3 Impacts on water supply

2.2.4 Impacts on terrestrial ecosystem

2.2.5 Human health

2.3 Risk of Climate Change in Indonesia and Domestic Climate Change Policy

2.4 Carbon Trade

2.5 Methane as a Greenhouse Gas

2.6 Chemistry of Methane in the Troposphere

2.7 Wetland Rice Field as a Source of Methane Emission

2.8 Methane Production in Rice Soils

2.8.1 Factors affecting CH\(_4\) production from flooded rice soil

2.8.1.1 Reduction processes in soil

2.8.1.2 Soil pH

2.8.1.3 Soil temperature

2.8.1.4 Sulfate concentration and presence of sulfate reducing bacteria

2.8.1.5 Organic matter in paddy soils

2.8.1.6 Substrate and nutrient availability

2.8.2 Methane production potential

2.9 Mitigation of CH\(_4\) Emission from Flooded Rice Soil

2.9.1 Rice cultivars

2.10 | 2.11 |
| 2.13 |
| 2.16 |
| 2.21 |
| 2.22 |
| 2.23 |
| 2.23 |
| 2.24 |
| 2.25 |
| 2.26 |
| 2.26 |
| 2.27 |
| 2.28 |
| 2.30 |
| 2.30 |
2.9.1.1 Rice cultivar morphological and physiological traits affecting CH₄ emission and production 2.31
2.9.1.2 Rice roots distribution and root exudates 2.33
2.9.1.3 Relationship between plant growth parameters and CH₄ emission, and production 2.38
2.9.2 Water regime 2.40
 2.9.2.1 Effect of water regime on root structure 2.41
2.9.3 Crop establishment 2.43
2.9.4 Organic matter amendment 2.45
2.9.5 Nitrification inhibitors 2.48
2.9.6 Biogas generator 2.49
2.10 Cost of Mitigation 2.50
 2.10.1 Cost effectiveness analysis 2.50
2.11 Methane Emission from Rice Field in Indonesia 2.52
2.12 Summary 2.54

3 METHANE EMISSION FROM RICE FIELD UNDER DIFFERENT CROP ESTABLISHMENTS AND RICE CULTIVARS 3.1

3.1 Introduction 3.1
3.2 Methodology 3.3
 3.2.1 Field site description 3.3
 3.2.2 Description of selected cultivars 3.5
3.2.3 Experimental layout and field management 3.9
 3.2.3.1 Experiment I: Methane emission from transplanted rice cultivars 3.9
 3.2.3.2 Experiment II: Methane emission from direct-seeded rice cultivars 3.13
 3.2.3.3 Experiment III: Methane emission under different crop establishment and rice cultivars 3.16
3.2.4 Redox potential and pH measurements, and collection of meteorological data 3.21
3.2.5 Sampling and measurement of plant parameters 3.22
3.2.6 Methane emission measurement 3.24
3.2.7 Statistical analysis 3.25
3.3 Results and Discussion 3.26
 3.3.1 Methane emission from transplanted rice cultivars 3.26
 3.3.1.1 Plant growth parameters and yield 3.26
 3.3.1.2 Methane flux, climate and redox potential 3.29
 3.3.1.3 Total seasonal CH₄ emission 3.37
 3.3.2 Methane emission from direct-seeded rice cultivars 3.40
 3.3.2.1 Plant growth parameters and yield 3.40
 3.3.2.2 Methane flux and climate 3.44
 3.3.2.3 Total seasonal CH₄ emission 3.50
 3.3.3 Methane emission under different crop establishments and rice cultivars 3.51
 3.3.3.1 Plant growth parameters and yield 3.51
3.3.3.2 Climate and CH$_4$ flux 3.57
3.3.3.3 Relationships between CH$_4$ flux and plant growth parameters 3.61
3.3.3.4 Total seasonal CH$_4$ emission 3.71

3.4 Conclusions 3.73

4 METHANE EMISSION IN DIFFERENT WATER REGIMES 4.1

4.1 Introduction 4.1
4.2 Methodology 4.2
 4.2.1 Experimental layout 4.2
 4.2.2 Modes of irrigation 4.4
 4.2.3 Soil management 4.6
 4.2.4 Methane flux measurement 4.8
 4.2.5 Measurement of redox potential, pH, plant growth parameters, and yield components 4.8
 4.2.6 Statistical analyses 4.9
4.3 Results and Discussion 4.10
 4.3.1 Plant growth parameters and yield 4.10
 4.3.2 Methane flux, redox potential and pH 4.15
 4.3.3 Total seasonal CH$_4$ emissions 4.21
4.4. Conclusions 4.22

5 POTENTIAL CH$_4$ PRODUCTION AND CH$_4$ EMISSION OF CENTRAL JAVA RICE SOILS 5.1

5.1 Introduction 5.1
5.2 Methodology 5.3
 5.2.1 Soil classification and sampling 5.3
 5.2.2 Soil analyses 5.3
 5.2.3 Measurement of potential CH$_4$ production 5.10
 5.2.4 Field estimate of CH$_4$ emission 5.13
 5.2.4.1 Evaluation of CH$_4$ sampling time 5.13
 5.2.4.2 Estimation of CH$_4$ emission during growing period 5.18
 5.2.4.3 Evaluation of CH$_4$ gas in the syringe during sampling 5.24
 5.2.4.4 Measurement of CH$_4$ emission from rice field using manually operated chamber 5.25
 5.2.5 Statistical analyses 5.26
5.3 Results and Discussion 5.28
 5.3.1 Potential CH$_4$ production in soils 5.28
 5.3.2 Total potential CH$_4$ production of soils 5.31
 5.3.3 Total seasonal CH$_4$ emission in soil 5.34
 5.3.4 Relationship between total potential CH$_4$ production and CH$_4$ emission in soils 5.37
5.4 Conclusions 5.38
6 MITIGATION OPTION AND ECONOMIC ANALYSIS 6.1

- 6.1 Introduction 6.1
- 6.2 Methane Emission Mitigation from Rice Field 6.1
- 6.3 Cost Effectiveness of Mitigation Option 6.5
- 6.4 Conclusions 6.14

7 SUMMARY AND CONCLUSIONS 7.1

REFERENCE R.1
APPENDIX A.1
BIODATA OF AUTHOR B.1