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ABSTRACT
Controller tuning is needed to select the optimum response for the controlled process.  This work 
presents a new tuning procedure of PID controllers with safety and response quality measures on a 
non-linear process model by optimization procedure, with a demonstration of two tanks in series.  
The model was developed to include safety constraints in the form of path constraints.  The model 
was then solved with a new optimization solver, NLPOPT1, which uses a primal-dual interior point 
method with a novel non-monotone line search procedure with discretized penalty parameters.  
This procedure generated a grid of optimal PID tuning parameters for various switching of steady-
states to be used as a predictor of PID tunings for arbitrary transitions.  The interpolation of tuning 
parameters between the available parameters was found to be capable to produce state profiles with 
no violation on the safety measures, while maintaining the quality of the solution with the final set 
points targeted achievable.

Keywords: 	Non-linear programming, optimal PID tuning parameters, path constraints, PID 
controller tuning, primal-dual interior point method

NOMENCLATURE

Latin Symbols
A1,  A2	 cross-sectional areas of tank 1 and tank 2, respectively
apipe	 cross-sectional area of the pipes
cs	 controller’s actuating signal
c(t)	 controller’s output
Fin 	 low rate into tank 1
Fmax 	 maximum flow rate
f(x)	 objective function 
h1,  h2	 liquid levels of tank 1 and tank 2, respectively
hm	 measured liquid level
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hsp	 targetted liquid level
hss	 initial steady-state level
h(x)	 equality constraints as defined in the context
KC	 proportional gain 
l 	 total losses in pipe
l∞	 infinity norm of the Lagrange multiplier values
lcontraction	 loss contributed by a sudden contraction at tank exit
lvalve	 loss contributed by a half open globe valve in pipe
tf	 final time
ts 	 starting time
x 	 primal variables
xL	 lower bounds on variables x
xU	 upper bounds on variables x

Greek symbols
εss	 final steady-state satisfaction parameter
ε(t)	 deviation
µ	 barrier parameter
ΦB	 barrier function
τD	 derivative time constant
τI	 integral time constant

Abbreviations
AI 	 artificial intelligent
CPU  	 CPU time
FL  	 fuzzy logic
GA  	 genetic algorithm
IAE  	 integral of the absolute value error
IFT  	 Iterative Feedback Tuning
IMC  	 Internal Model Control
ISE  	 integral of the square error
ITAE  	 integral of the time-weighted absolute error 
MILP  	 mixed integer linear programming problem
MINLP  	mixed integer nonlinear programming problem
MIQP  	 mixed integer quadratic programming problem
MPC 	 Model Predictive Control
NLP  	 nonlinear programming problem
PI  	 proportional-integral
PID  	 proportional-integral-derivative
SIMC  	 Simple Internal Model Control
SISO  	 single-input single-output
SOC  	 second order correction
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INTRODUCTION
This paper focuses on a proportional-integral-derivative (PID) controller, which can be represented 
as:
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	 In the model, c(t) is the controller’s output, Kc is the proportional gain of the controller, τI is the 
integral time constant, τD  is the derivative time constant, and cs is the controller’s actuating signal 
at ε(t) = 0.  These parameters vary across process models and must be tuned to get the optimal 
behaviour of the process.
	 The processes studied are non-linear dynamic processes.  This is because most of the chemical 
processes are nonlinear and non-stationary.  The characteristics of the process change over time.  In 
general, the particular case of servo-control (steady-state switching) is a situation that is not easy 
to deal with by the local linearization of the dynamic model of the system.
	 For example, the controller must be targeted to satisfy the maximum product yield, stabilize 
the process, sustain product quality, and maintain the maximum feed throughput.  Meanwhile, too 
tight control might produce large oscillations, low product yield, and process swing.

PID Controller Tuning
In tuning a controller, the general performance criteria used to determine good controller tuning 
parameters are that it is required to produce a response with minimum overshoot and oscillation, 
use minimum settling time to reach the new steady-state, and fulfil the steady-state performance 
criterion which needs the deviation error to be zero after a sufficient time.  Different performance 
criteria chosen for the same process will give different optimal tuning of the controller.
	 There are two ways the controller can be tuned, manually or computationally, e.g. as described 
by Stephanopoulos (1984).  Manually, for a process with a possibility of offline tuning, the system 
can be subjected to changes in input, where the response is then measured to determine the controller 
parameters.  For online tuning, two common methods to choose from are the Cohen-Coon’s process 
reaction curve tuning method and the Ziegler-Nichols tuning method.  Basically, no process model is 
required for the Cohen-Coon method.  The open control loop of the system is subjected to changes 
in its input, and the model of the recorded response is then approximated as a first-order system 
with a dead-time.  From the approximated process model, the tuning parameters are then determined 
using the developed Cohen-Coon formula.  Almost similar is the Ziegler-Nichols method, where 
some changes are introduced to the closed loop system, in the input or the disturbance, from which 
the Ziegler-Nichols recommended settings can be used to tune the controller.
	 Computationally, provided the complete mathematical model of the system is available, 
the optimization of time-integral performance criteria can be used to tune the parameters, such 
as those described by Stephanopoulos (1984).  Here, the response of the system is optimized so 
that the deviation in the set point is minimized throughout the process.  The solution generated 
computationally is expected to perform better than the tuning parameters produced through a manual 
procedure as these tuning parameters should comply all the control constraints required, while 
minimizing the performance criterion.  Various criteria for the error of the response are the integral 
of the square error (ISE), integral of the absolute value of the error (IAE) and integral of the time-
weighted absolute error (ITAE).  Similarly, the optimizers used vary as well, across a whole range 
of state-of-the-art optimizers available.  An example is an ant system algorithm as implemented by 
Tan et al. (2005) to obtain optimal PID tuning parameters in their PID controller.  Another example 
is the tuning of a PID controller for the first-order plus time delay models by Tavakoli & Tavakoli 
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(2003), whereby dimensional analysis and curve fitting techniques are used to build the model, and 
a genetic algorithm optimization technique is used to find the optimal PID tuning parameters.  It 
has been demonstrated that the proposed novel optimal design method performs better compared 
to traditional tuning procedures.
	 Another relatively new method in optimization is in the area of artificial intelligent (AI) where 
methods such as neural networks, fuzzy logic, and genetic algorithms are used to tune the controller 
parameters.  Some research in the area, including a paper by Gadoue et al. (2005).  In their study, the 
researchers compared an offline genetic algorithm (GA) strategy to online fuzzy logic (FL) tuning 
scheme in tuning a PI controller of an induction motor.  They found that the GA strategy is better 
for the normal operation conditions, while FL performed better when there are variations in the 
system parameters.  Another example is by Lin et al. (2004), where a real-time GA is used to search 
the optimal controller tuning parameters of a PI controller of a linear induction motor.  Meanwhile, 
combinations between AI with the optimization methods have also been done, such as the work by 
Kao et al. (2006), in which a heuristic optimization algorithm, particle swam optimization method, 
is used to produce the optimal tuning parameters of a slider crank mechanism system at no load and 
full load conditions.  With this information, a fuzzy rule is then used to tune the parameters online 
according to changes in the system.
	 Apart from optimization methods, direct synthesis (as discussed in the book by Smith & 
Corripio, 1985), is another tuning method suitable for processes with a complete process model.  
If there is a complete control loop, with the dynamics of each element in the control loop including 
the process dynamics as well as the desired form of the closed-loop response characteristic, direct 
substitution and rearrangement of the closed-loop system equations will then give the optimal 
controller tuning parameters for the system.  Other related methods include the Internal Model 
Control applied to PID controller design (IMC-PID) by Rivera et al. (1986), and the Simple Control 
Internal Model Control on PID controller (SIMC-PID) by Skögestad (2003).  With the availability 
of a process model, the IMC-PID and SIMC-PID design procedures will give controller parameters 
which are related straightforwardly to the model parameters, except for one tuning parameter, i.e. 
the closed-loop time constant.  Meanwhile, the IMC-PID tuning rules are derived analytically for 
each process, SIMC-PID tuning rules simplify all the processes to an approximate first- or second-
order process with time delay.  Then, only the approximated model is subjected to direct synthesis 
to obtain the relationship between the controller tuning parameters and the process model.

Steady-state Switching and Existing Control Methodologies
Often, steady-state conditions are disturbed while operating a process.  This may be due to some 
upsets or disturbances into the process, where a new steady-state must be obtained to get the optimal 
process output.  An example is in a combustion system where the temperature of the air affects the 
efficiency of the combustion.  Therefore, the inlet fuel/air ratio needs to be changed accordingly 
to maintain the efficiency of the system (Stephanopoulos, 1984).  Another example is a process 
consisting of a methanol synthesis fixed-bed reactor (Shahrokhi & Baghmished, 2005), where 
changes in the input feed composition of the reactor will affect the reactor yield.  Therefore, pressure 
of the boiling water in the reactor which is the manipulated variable, must be changed accordingly 
responding to the changes in the feed.
	 When the steady-state of a process switches, it is then natural to expect the controller to adapt 
itself to the changes.  The controller implemented will be able to bring the process towards the 
required new steady-state provided enough time is given and “bad behaviour” is allowed in the 
controller response, such as oscillations, high overshoot, or long settling time, which will affect the 
product output.
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	 However, as the performance of the controller is not guaranteed, more insights are needed 
into the tuning procedure to include steady-state switching.  There is a number of existing control 
methodologies used to deal with the steady-state switching so that the final output is still under 
control, some of the techniques are to be discussed next.

Adaptive control
An adaptive control, as described by Stephanopoulos (1984), adapts itself automatically when it 
detects changes in the steady-state condition of the process.  The extra control loop in the controller 
provides new tuning parameters based on an extra objective.  The objective is set so that it applies 
one of the performance criteria and produces adjusted tuning parameters which are then fed to the 
controller.  For a process with a complete model of the system available, programmed adaptive 
control can be used.  The controller measures an auxiliary variable of the process, detects the changes 
in the chosen variable when there is a change of process steady-state, does a simple calculation 
based on the changes using the process model, and provides the adjusted tuning parameters to the 
controller.  However, if the process model is not available, self-adaptive control can be used.  The 
model-reference adaptive control tunes the controller parameters online based on the output from 
the process and compares the response produced to the reference model. From the deviation in the 
error of the response, new values for controller parameters are obtained.  Another self-adaptive 
controller, the self-tuning regulator estimates new tuning parameters after a steady-state switching 
by assuming the process to behave like a first-order system with dead time.  The tuning parameters 
produced from the estimated model are then adjusted accordingly to fulfil the design criteria before 
being fed back to the controller (Stephanopoulos, 1984).

Optimization with internal model control (IMC)
This is another method that has been used recently by Shahrokhi & Baghmisheh (2005) in a methanol 
synthesis fixed-bed reactor system.  The method is based on online changes in the set-point, in 
this case the pressure of the boiling water.  First, the pressure dynamics are modelled as an offline 
open loop response using the least squares method.  Various magnitudes of pressure steady-state 
switching are introduced to the loop to collect the input-output data.  These data are then used to 
estimate the process model by the least squares method.  Next, the IMC technique is applied based 
on the model obtained to provide the required PID tuning parameters.  This is a simple technique 
which calculates the suggested PID tuning parameters using the supplied equations.  It is interesting 
to note that this technique produces a single set of tuning parameters that consider all the possible 
steady-state switchings.  The shortcoming with this is that it will by necessity be slower in cases a 
more rapid response should be feasible, and in general desired.

Iterative feedback tuning (IFT)
Iterative feedback tuning technique has been first introduced by Hjalmarsson et al. (1994).  It is 
a procedure used on a model-free process.  The technique is based on optimizing a specific cost 
function which includes the system’s output error and the control effort to obtain the optimal 
controller tuning parameters.  Since this is a model-free process, the iterations in the minimization 
will be based on signal information on the closed-loop system of the process. The optimization 
technique used is based on Newton’s method.  However, since it is a model-free process, the gradient 
and the Hessian of the cost function is unavailable analytically.  Here, the gradient of the cost function 
is an estimated gradient found from iterative external experiments done on the closed-loop system 
formed by the real plant and the actual controller.  On the other hand, the Hessian can be estimated, 
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for instance, using an identity matrix as the Hessian, or the Gauss-Newton approximation of the 
Hessian, as long as it is a positive definite matrix which will be able to give a descent direction.
	 Since then, this technique has been modified, and a comparison done by Lequin et al. (2003) 
showed that it outperforms other online techniques, namely the Ziegler-Nichols, IMC and the ISE 
methods.

Optimization with mathematical modelling
In their paper, Syrcos & Kookos (2005) suggested that the bilinear expression in their PID controller 
to be remodelled so that the available optimizer could be used to solve the model.  In their model, 
the process is formulated as a single input single output (SISO) linear time variant system, while 
the PID controller was presented in the velocity form of the discrete approximation of an ideal PID 
controller.  Included in the model are limit constraints on the state variables.  This model is then 
presented as an optimization problem with the objective of minimizing the performance criterion 
of the controller.  In their model, however, exists a bilinear term due to the formulation of the PID 
controller.  On the other hand, the bilinear term occurs can be removed by mathematical programming 
formulation and reformulated into linear terms.  The final model will then be either MINLP, MILP, 
or an MIQP optimization problem, depending on the objective function, and solved using GAMS 
interface to CPLEX and MINOS solvers.
	 An almost related method is by Kazantzis et al. (2005) who suggested optimization on the 
performance criteria to select the best tuning parameters.  The performance criterion chosen is a 
quadratic function of the tracking error and the control effort, which is solved by Zubov’s partial 
differential equations.  The resulting model is an NLP model which is then optimized using the 
non-linear programming library of MAPLE.  In their paper, the optimal control parameters were 
found to depend on the step-size of the set-point.  This means, each steady state switching needs 
different control parameters to behave optimally.  They also suggested finding a single set of optimal 
controller parameters for the process using minimax optimization to find the optimal solution by 
minimizing the effect from the worst case scenario, taken to be the biggest step up and biggest step 
down in the steady state changes.
	 By understanding the above procedures, an approach for a simpler but effective optimal tuning 
procedure for PID controllers for processes with steady state switching is introduced.

The New Approach
For the present work, a simple and effective tuning procedure for PID controller adaptation, with 
respect to steady-state switching operations, is formulated through an optimization procedure.  The 
targets are to produce tunings that give high quality controller performance (rapid and stable transfer 
to new steady-state), and satisfy operational and state constraints (path constraints) throughout the 
transition.  Here, the demonstration will be done on servo tuning of a system of two tanks in series 
with path constraints, which include the limitation on the liquid level in the tanks, the amount of 
inlet feed flow rate permitted and the requirement for a stable steady-state condition to be reached 
in reasonable time.

PROCESS MODEL
In the real world chemical engineering scenario, a linear, first-order, steady state process rarely 
occurs.  Therefore, a first-order case study would be arbitrary, while a non-linear, higher order, and 
dynamic example will be more beneficial as it refers closely to the actual situation.  In the example 
is a second order non-linear process consisting of two tanks arranged in series, as shown in Fig. 1.  
The control objective is to control the level of the liquid in tank 2, switched from one steady-state 
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to another desired steady-state, without violating any safety measures while maintaining stability 
and fast response, in the presence of changes in the inlet feed flow rate.
	 To model the process, material balance was done on the two tanks, for which, for tank 1 is:
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and, for tank 2:
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		  h2 (0) = hss`	  (3b)

h1 and h2 are the liquid levels of tank 1 and tank 2, respectively.  At the beginning of the process, h1 

and h2 were at the same initial steady-state level hss as both tanks were assumed to be at atmospheric 
pressure.  A1 and A2 are the cross-sectional areas of tank 1 and tank 2, respectively, for which, in this 
case A1 = 3.80 m2 and A2 = 2.54 m2.  apipe is the cross-sectional area of the pipes with apipe = 7.85 ´ 
10-5m2 in the system.  Fin is the flow rate of the liquid into tank 1 and hss is the initial steady-state 
of the system, which is the initial liquid level in tank 2.  l (l = 10.0) is the total losses in the pipe 
contributed by a sudden contraction at tank exit (lcontraction = 0.5) with a half open globe valve used 
in the pipe (lvalve = 9.5) (Perry et al., 1963).
	 The liquid levels in tank 1 and tank 2 were restricted to an upper and lower limit to prevent 
overflow and dry condition in the tanks.  The liquid level limit for tank 1 was such that:

                                                                . ( ) .h t1 0 3 01# # 	 (4)

and the liquid level limit for tank 2 was:

                                                               1.0 ( ) 3.0h t2# # 	 (5)

To measure the liquid level, a measurement device with the first-order dynamics was installed for 
tank 2.  The differential equation is such that:

		  10 h hm
dt
dh

2
m + = 	 (6a)

                                                                                              
		  hm(0) = hss`	 (6b)

where hm is the measured liquid level in tank 2.
	 In the system, a PID controller was used to achieve the desired output value.  Here, hsp was let 
to be the set point, i.e. the targeted liquid level in tank 2.  Then, the difference of the measured and 
the desired liquid level was recorded as the deviation ε(t) where:

		   ( ) ( )t h h tsp mf = - 	 (7)
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The response of the PID controller was given by:

			   (8)

	 For this case study, the controller’s actuating signal was set to cs = hss.  Here, the manipulated 
variable Fin was related directly to the PID controller output, although this was not actually the 
case in real models.  The final control element’s response to changes was assumed to be very fast 
which is true for small or medium-size valves (Stephanopoulos, 1984) that the dynamics could be 
neglected.  The remaining constant gain term was set as 1.  Therefore, the dynamics of the actuator 
was not included in the equations.
	 Thus, it is important to get a high quality and stable solution.  To guarantee this, the final steady 
state was set to:
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where εss was the final steady-state satisfaction parameter such that εss  < 1 and ts and tf were the 
starting and end time of the integration.  In this case study, εss  = 10-6 and ts = 0.7tf  were used.  Here, 
the final time, tf, was set as a free variable.  This was done to allow the final time to vary, so that 
the tank could have a longer time for a difficult switching with the objective being to minimize the 
time needed to satisfy all the requirements (tf).
	 Apart from guaranteeing the quality of the solution, the operability and safety measures needed 
to be satisfied as well.  The level of the liquid was controlled such as not to exceed the operable 
limit as in equations (4) and (5).  The inlet flow rate was also controlled as the operating capacity 
was restricted to be below a limit to follow some safety measures such that: 

		  ( )F t F0 maxin# # 	 (10)

Where, Fmax was the maximum allowable flow rate in the pipe.  Alternatively, such constraints might 
be imposed by the pumping capacity available.  Here, Fmax = 0.04m3/s was used.
	 To conclude, the objective was defined as to find the optimal response in getting to the required 
liquid level in tank 2.  It can be formulated as:

                                            	 | ( ) |min imize h t h dt
t

t
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o

f
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Where, the criterion was based on the integral of the absolute value of the error (IAE) 
(Stephanopoulos, 1984).

METHODS AND PROCEDURES
The model produced was then converted into general non-linear equations to be used in a non-linear 
optimization solver.  All the integral equations were reformulated into differential equations, from 
which, the differential equations were then discretized using backward finite differences to produce 
a set of general nonlinear equations such that:
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subject to:

                                                             h (x) = 0	 (12b)
                                                                    
		  xL ≤ x ≤ xU	 (12c)

where x Rnxd .  Inequality constraints were reformulated into equalities with appropriately bounded 
slack variables.  The sequence of equality constrained problems with bounded variables was solved 
with a primal-dual interior point method by solving:

      	 [( ( ) ( ) ( ) ( ) [( ) ( ) (min B x f x i n x x i U x i x i x x i x i L1 1 1n n. . . . . . . . .n= - = - + - + -
- - -

R / 	 	
			   (13a)

subject to:

		   h (x) = 0	 (13b)

where n  > 0 was the barrier parameter and n  must be chosen such as 0"n  so that ( ) , ,x x x* * *
"n  

was the optimal and feasible solution of the NLP problem of equations (12a) to (12c). 
	 The above model was then solved through an optimization procedure using the NLPOPT1 
solver, developed by Vassiliadis et al. (2006).  In short, the NLPOPT1 solver is a primal-dual interior 
point algorithm using logarithmic barrier method.  It solves the Lagrangian of the barrier equation 
(13a) and (13b) using the Newton method with line search and backtracking procedure to obtain 
the optimal solution.
	 In NLPOPT1, a novel non-monotone line search procedure with a standard l1-penalty function 
for the definition of the merit function as a measure of accepting or rejecting the updated points 
from the line search is used.  However, one of the major problems with the l1-penalty function is 
such that the penalty parameter is not known a priori.  Another problem with the mentioned merit 
function is the well-known Maratos effect (Maratos, 1978).
	 To overcome these issues, a coarse-grained non-monotone line search scheme had been 
implemented by Vassiliadis et al. (2006) in their line search technique.  Here, the penalty parameter 
is made up from discretization of a whole range of meaningful numbers (10+16 to 10-16) to produce 
penalty parameter levels, with an additional provision of a memory list for each level to maintain 
the non-monotonicity.  In this way, there is no need to specify a single penalty parameter, which 
is hard to guess in the first instance, and may not be correct until the iteration is very close to the 
optimal solution.  At each iteration, the operating merit function selected will be based on the active 
operating penalty parameter level, which is obtained through a comparison with the infinity norm 
of the Lagrange multiplier value, l3 .  Acceptance of the search direction is then determined by an 
Armijo non-monotone acceptance criterion (Armijo, 1966).  Otherwise, a backtracking procedure 
will be applied.
	 As a safety measure, a Levenberg-Marquardt scheme is implemented in the solver, to be 
activated in the cases where a descent direction is not obtainable.  Second-order correction (SOC) 
steps (Wächter & Biegler, 2004) are also implemented as an extra caution measure to counter the 
Maratos effect.
	 NLPOPT1 was programmed in MathematicaTM version 5.0, with a customised equation-based 
interface and able to produce exact first and second-order sparse derivative information.  All the 	
	 To demonstrate the application of the PID controller tuning parameter grid produced, two 
situations were selected where the initial steady states and the final set points were not in the grid.  
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simulations were done on a Pentium IV computer with 224 MB RAM and 1.19 GHz CPU clock.  
Each optimization model, obtained using 30 backward finite difference steps, consisted of 322 
variables, 165 equality constraints, 123 equality constraints, 168 lower bounds, 168 upper bounds, 
65 linear constraints, and 223 non-linear constraints.  The sparsity of the problem involved 1421 
non-zeros in the constraint Jacobian, 1044 non-zeros in the Lagrangian Hessian, and 3886 non-zeros 
in the overall Lagrange-Newton matrix.  The number of the variables, lower and upper bounds, 
non-zeros in the Jacobian, the Hessian and the Lagrange-Newton overall matrix, includes the 
automatically generated slack variables for inequality constraints.  On average, each steady-state 
switching optimization run required 15 CPU seconds for symbolic parsing and 114 CPU seconds 
for solving.

RESULTS AND APPLICATIONS
Through the optimization runs on the model of equations (2a) to (11), the optimal and feasible PID 
controller tuning parameters (Kc, τI and τD) of the process model from various selected initial steady 
states to corresponding final set points were obtained.  The points for the steady state transitions 
were purposely selected so that the points were more concentrated at the crucial liquid level limits 
of the tanks, which were the lower and upper bound constraints on liquid level.  The data obtained 
were given on a grid as in Table 1, and were to be stored into the memory of the controller.  When 
needed, the memory would be evoked and interpolated to give the tuning parameters for cases not 
available in the memory storage.

TABLE 1
PID controller tuning parameters (Kc, τI and τD) for selected steady states transitions

Initial 
steady 

states, hss

Set points, hsp

1.001 1.25 1.5 2 2.5 2.75 2.999

1.001
Kc 0.118453 0.059108 0.029524 0.019676 0.016864 0.014762
τI 4027.76 3157.04 2999.35 2788.9 2345.38 4087.46
τD 117.769 143.828 204.778 237.655 203.971 605.321

1.25
Kc 0.047146 0.113043 0.037681 0.022609 0.01884 0.016158
τI 5173.23 4410.86 3700.75 3069.18 3083.95 4587.48
τD 450.097 122.913 189.934 237.257 317.504 633.4

1.5
Kc 0.025771 0.051439 0.05428 0.02714 0.021712 0.018106
τI 3461.32 2795.39 5301.39 2556.77 3956.14 5227.07
τD 428.673 129.482 178.271 226.117 396.227 671.511

2
Kc 0.014864 0.019799 0.029699 0.050302 0.01782 0.025176
τI 2597.15 2165.05 2551.8 5497.2 3515.92 7329.34
τD 397.103 145.938 139.702 182.273 250 727.219

2.5
Kc 0.010754 0.013282 0.016602 0.033204 0.075292 0.034034
τI 2283.56 2022.37 2417.89 3495.57 8503.02 10000
τD 378.248 166.968 167.788 157.294 249.086 754.203

2.75
Kc 0.009956 0.011608 0.01393 0.023216 0.069649 0.034297
τI 2100.65 1715 1505.02 3445.76 5177.42 10000
τD 291.138 105.612 8.87E-06 185.944 157.306 762.564
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Fig. 1: Process diagram of the two tanks in series with controller loop

From the interpolation done on the neighbouring steady state transitions, the tuning parameters 
obtained were used in the simulation to produce the profiles in Figs. 2 and 3.  The integrations had 
been set to simulate the real situation, where the controller would be saturated at both ends, with the 
flow rate only allowed to vary between 0 and 0.04 m3/s.  The profiles of the steady-state switching 
from 1.3 m to 2.9 m obtained show no violation on the safety measure and quality measures with 
the final set points targeted achievable.  However, in the case study of steady-state switching from 
2.6 m to 1.4 m, one of the constraints, the lower level limit on tank 1, had been violated.
	 The assumption for this violation was that more steps for the discretization of the differential 
equations were needed.  The model was then reoptimized with the differential equations discretized to 
100 steps, with 88% of the steps concentrated at the earlier 30% of the total time used, to reproduce 
the optimal tuning parameters for the steady-state switching around the desired steady state.  The 
modified optimal tuning parameter sets were as shown in Table 2.  Re-interpolating and re-integrating 
the model gave the profiles as in Fig. 4.  The new profiles obtained showed no violation on the safety 
and quality measures with the final set points targeted achievable.  The conclusion from this was 
that the assumption was correct, and tight handling of path constraints was necessary to produce a 
reliable grid of optimal pre-tuned PID settings.
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Fig. 2: Height of tank 1, height of tank 2 and inlet flow rate profiles for the steady state 
transitions from hss = 1.3 to hsp = 2.9
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Fig. 3: Height of tank 1, height of tank 2 and inlet flow rate profiles for the 
steady state transitions from hss = 2.6 to hsp = 1.4
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Fig. 4: Height of tank 1, height of tank 2 and inlet flow rate profiles for the steady state transitions from 
hss = 1.3 to hsp = 2.9, re-integrated with 100 steps in the finite difference discretization
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TABLE 2
New PID controller tuning parameters (Kc, τI and τD) for 4 steady states transitions after being re-optimized 

with 100 steps in the finite difference discretization

Initial steady states, hss
Set points, hsp

1.25 1. 5

2.5
Kc 0.013282 0.016602
τI 2149.03 2462.84
τD 202.159 197.489

2.75
Kc 0.011608 0.01393
τI 2100.60 2357.52
τD 209.995 205.981

	 On the contrary, using non-optimal parameter tunings would give infeasible and/or worse 
objective solution.  To show this, a steady state transition of 1.25 to 2.999 was simulated twice; 
one with the correct tuning parameters as produced by the optimizer and another with parameters 
produced by the optimizer, but for a different steady state transition (1.25 to 2.5).  Again, the 
simulations done had been set to represent the real situation, with the controller saturated at both 
ends, where the flow rate was only allowed to vary between 0 and 0.04 m3/s.  The set with non-
optimal parameters violated both the safety and operability measures, as shown in Fig. 5.

CONCLUSIONS AND FUTURE WORK
The objective of this work had been dedicated in exploring a grid of PID controller tuning 
methodologies of a nonlinear process model for different steady-state switching.  The tuning 
parameters produced were optimal and strictly satisfying all the response quality and safety 
constraints.  The model produced was then reformulated into a standard nonlinear optimization 
model and the novel interior point method implemented in the NLPOPT1 solver was applied to solve 
them.  It was observed that through interpolation of the available optimal tuning parameters in the 
steady-state switching tuning parameters grid, near-optimal tuning parameters for any steady-state 
switching between the ones considered could be obtained.  The concept was demonstrated through 
two examples and the results seemed to be satisfactory.  No constraints were violated and the new 
steady states were achievable.
	 This work is different from the reviewed literature in the sense that the solution found from 
this method did not only seek some optimal tuning solution, but also included the operational 
constraints.  In realistic applications, these constraints are important and need to be accounted for 
in order to optimize the tuning of the controller parameters.  Furthermore, this grid method is more 
refined to enable us to find a better solution as a process with large system changes should not only 
rely to optimal solutions found at only the two ends of the variations, at no load and at full load 
conditions.  With a finer mesh of optimal and feasible solutions, it is more likely to find a good, 
feasible solution to begin with.
	 In the future, it is planned to replace the simple interpolation used in finding the controller 
pre-tuned settings for steady state changes with a better representation of interpolation by fuzzy-
logic and neural network methodologies.  Another challenging avenue to explore is the coupling of 
this approach with Model Predictive Control (MPC), particularly tying in model adaptation when 
parameter drift occurs.  Although the pre-tuned settings might be adequate under certain conditions, 
the re-tuning of the grid will be inevitable.  In that case, it is expected that the previous grid values 
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Fig. 5: Height of tank 1, height of tank 2 and inlet flow rate profiles for hss = 1.25 to hsp = 2.999 simulations 
with correct (solid lines) and non-optimal (dashed lines) tuning parameters used
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will provide close starting points so that the re-tuning of the grid will require for less effort in solving 
optimal control problems than the base case.
	 Other things to be done are to examine further applications in terms of regulatory control, 
extending the present work on servo control and to investigate the implementation of these concepts 
into more complex nonlinear systems.  Finally, experimental testing of an on-line implementation 
of this approach will be investigated.
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