UNIVERSITI PUTRA MALAYSIA

VANADIUM PHOSPHATE CATALYST SYNTHESIZED BY ORGANIC METHOD USING SONICATED V$_2$O$_5$ FOR SELECTIVE OXIDATION OF n-BUTANE TO MALEIC ANHYDRIDE

SUHAIZAM SHAHRUL AFFENDY BIN SUHAIMI

FS 2012 33
VANADIUM PHOSPHATE CATALYST
SYNTHESIZED BY ORGANIC METHOD USING SONICATED V_2O_5
FOR SELECTIVE OXIDATION OF n-BUTANE TO MALEIC ANHYDRIDE

SUHAIZAM SHAHRUL AFFENDY BIN SUHAIMI

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2012
VANADIUM PHOSPHATE CATALYST
SYNTHESIZED BY ORGANIC METHOD USING SONICATED V₂O₅
FOR SELECTIVE OXIDATION OF n-BUTANE TO MALEIC ANHYDRIDE

By

SUHAIZAM SHAHRUL AFFENDY BIN SUHAIMI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfillment of the Requirement for the Degree of Master of Science

May 2012
Abstract of thesis to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Master of Science

VANADIUM PHOSPHATE CATALYST SYNTHESIZED BY ORGANIC METHOD USING SONICATED V$_2$O$_5$ FOR SELECTIVE OXIDATION OF n-BUTANE TO MALEIC ANHYDRIDE

By

SUHAIZAM SHAHRUL AFFENDY BIN SUHAIMI

May 2012

Chairman: Prof. Taufiq Yap Yun Hin, PhD

Faculty: Science

Selective oxidation of alkanes by heterogeneous catalytic reaction has been one of the most active areas in the field of catalysis. The selective oxidation of n-butane to maleic anhydride (MA) over vanadium phosphate catalyst (VPO) was recognized as one of the most studied reaction for the past few decades. A number of new methods were suggested in the preparation of VPO catalyst to increase the performance of the catalyst in terms of activity and selectivity. In this study, VPO catalysts were synthesized using sonicated V$_2$O$_5$. V$_2$O$_5$ obtained from the commercial sources was treated using ultrasound pretreatment with two different mineralizers (NaCl and NaNO$_3$) in several durations (30-120 min). XRD patterns of the sonicated V$_2$O$_5$ gave similar structure like the pure V$_2$O$_5$ phase and prolonged the duration of sonication had led to an increase in the intensity of the diffraction peaks, which indicated the high crystallinity of the sonicated V$_2$O$_5$. SEM micrographs showed that longer
periods of sonication pretreatment produced sonicated V$_2$O$_5$ with higher amount of plate-like crystals. TEM micrographs showed that due to the sonication pretreatment, V$_2$O$_5$ with nano scale size and in the form of wires was successfully synthesized. Prolonged duration of sonication up to 120 min also had reduced the diameter of the sonicated V$_2$O$_5$ to below than ~20 nm. Further study on the effect of sonication pretreatment to the physical and chemical properties of vanadium phosphate catalyst (VPO) was performed by using the sonicated V$_2$O$_5$ for the synthesis of VOHPO$_4$·0.5H$_2$O precursor. Comparative study between the sonicated VPO catalysts and VPO synthesized using conventional method (organic route) was done by using XRD, BET, bulk composition analysis, volumetric titration method analysis, SEM and H$_2$-TPR. Results showed that the application of sonicated V$_2$O$_5$ had reduced the crystallite size of the final VPO catalyst and increased the total surface area of the catalyst. TPR analysis also showed that the reactivity and reducibility of oxygen species for VPO catalyst synthesized by sonicated V$_2$O$_5$ was slightly improved, where the reduction peaks which correlated to the V$^{5+}$ and V$^{4+}$ phases were shifted to much lower temperatures. High amount of oxygen species at lower temperature will increase the availability of oxygen for the breaking of C-H bond during the partial oxidation of n-butane. As evident, the MA selectivity for VPO60 tremendously increased up to 52% while the n-butane conversion of VPO90 had greatly increased up to 43% during the selective oxidation of n-butane to MA.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENGHASILAN MANGKIN VANADIUM FOSFAT SECARA ORGANIK MENGGUNAKAN V$_2$O$_5$ YANG DIRAWAT DENGAN ULTRABUNYI UNTUK PENGOKSIDAAN n-BUTANA KEPADA MALEIK ANHIDRIDA

Oleh

SUHAIZAM SHAHRUL AFFENDY BIN SUHAIMI

Mei 2012

Pengerusi: Prof. Taufiq Yap Yun Hin, PhD

Fakulti: Sains

Pengoksidaan terpilih alkana melalui tindak balas pemangkin merupakan salah satu daripada cabang yang aktif di dalam bidang pemangkinan. Pengoksidaan butana kepada maleik anhidrida (MA) melalui mangkin vanadium fosfat (VPO) telah dikenal pasti sebagai salah satu tindak balas yang sering dikaji untuk beberapa dekad yang lepas. Pelbagai kaedah baru telah dicadangkan untuk penyediaan mangkin VPO bagi meningkatkan prestasi mangkin dari segi aktiviti dan keterpilihan. Dalam kajian ini, mangkin VPO dihasilkan melalui V$_2$O$_5$ yang telah dirawat. V$_2$O$_5$ dari sumber komersial dirawat menggunakan rawatan ultrabunyi bersama dengan dua mineral yang berbeza (NaCl dan NaNO$_3$) pada masa tertentu (30-120 min). XRD menunjukkan bahawa V$_2$O$_5$ yang telah diolah masih mempunyai pola yang sama seperti V$_2$O$_5$ yang tulen dan masa rawatan ultrabunyi yang semakin panjang akan meningkatkan keamatan bagi setiap puncak yang merujuk kepada pembentukan
hablur V₂O₅ yang semakin tinggi disebabkan oleh rawatan ultrabunyi yang telah dilakukan. Mikrograf SEM menunjukkan bahawa apabila masa untuk rawatan ultrabunyi dipertingkatkan, kuantiti hablur berbentuk kepingan yang terhasil juga menjadi semakin banyak. Mikrograf TEM menunjukkan bahawa kesan daripada proses rawatan ultrabunyi, V₂O₅ bersaiz nano dan berbentuk wayar telah terbentuk. Apabila masa rawatan ditingkatkan ke 120 minit, diameter V₂O₅ juga akan turut berkurang kepada ~20 nm. Lanjutan tentang kesan rawatan ultrabunyi terhadap sifat fizikal dan kimia mangkin VPO telah dikaji dengan menggunakan V₂O₅ yang telah diolah untuk menghasilkan prekursor, VOHPO₄·0.5H₂O. Perbandingan di antara mangkin VPO yang dihasilkan dengan menggunakan V₂O₅ yang telah diolah dan mangkin VPO yang dihasilkan secara konvensional (secara organik) dilakukan dengan menggunakan XRD, BET, kaedah analisis komposisi, kaedah pentitratan isipadu, SEM dan H₂-TPR. Data yang diperolehi menunjukkan bahawa aplikasi V₂O₅ yang diolah telah mengurangkan saiz purata hablur dan mangkin VPO yang dihasilkan turut mempunyai luas permukaan yang lebih tinggi. Analisis H₂-TPR juga menunjukkan bahawa kadar keaktifan spesis oksigen bagi mangkin VPO yang menggunakan V₂O₅ yang dirawat menjadi semakin baik kerana puncak penurunan yang berkaitan dengan fasa V⁵⁺ dan V⁴⁺ di dalam mangkin VPO telah beralih kepada suhu yang lebih rendah. Peningkatan jumlah spesis oksigen pada suhu yang rendah akan mempengaruhi sifat mudah-alih oksigen yang terdapat di permukaan mangkin untuk proses pemutusan ikatan C-H semasa pengoksidaan n-butana. Hal ini jelas dibuktikan melalui kadar penghasilan MA bagi VPO60 yang telah meningkat kepada 52% dan juga kadar penukaran n-butana bagi VPO90 yang telah meningkat kepada 43%.

vii
ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my sincere acknowledgement and sincere appreciation to my supervisor, Prof. Dr. Taufiq Yap Yun Hin and co-supervisor, Dr. Tan Yen Ping for their valuable guidance, constructive comments and suggestion throughout the journey of my study. Their patience and encouragement throughout the years, I would not forget in my whole life.

Special appreciation should also be reflected to my labmates, Aqilah, Nor Sharina, Diyana, Suziana, Fitriyah, Shafizah, Hwei Voon, Zaidi, Sudarno, Fendi and all the new members of PutraCAT for their support in helping me finishing this project. Thank you so much for your support and kindness during the duration of my study which led to the completion of my study. High appreciations also to the Research Officer of PutraCAT, Mdm. Tg. Sharifah Marliza and Amalina for their help and morale support. Besides, I would like to express my deepest gratitude to all the staff and laboratory assistant in Department of Chemistry and Bioscience Institute, UPM for their help and services in handling the analysis for my samples during this project. Thank you so much for your co-operation and willingness to provide guidance and expertise during the analysis process.

Last but not least, my deepest gratitude to my beloved mother, Mdm. Maima Bte Abdul and brother, Mohd. Shahril Affendy Bin Suaimi. Thank you for believe in me for all of this time and support me during the difficult time. The financial support from Universiti Putra Malaysia is also gratefully acknowledged.
I certify that a Thesis Examination Committee has met on 30th May 2012 to conduct the final examination of Suhaizam Shahrul Affendy Bin Suhaimi on his thesis entitled “Vanadium Phosphate Catalyst Synthesized by Organic Method using Sonicated V\(_2\)O\(_5\) for Selective Oxidation of \(n\)-Butane to Maleic Anhydride” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

\textbf{Intan Safinar, PhD}
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

\textbf{Mansor Hj Ahmad @ Ayob, PhD}
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Tan Kar Ban, PhD}
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Aishah Abdul Jalil, PhD}
Associate Professor
Faculty of Chemical Engineering
Universiti Teknologi Malaysia (UTM)
Malaysia
(External Examiner)

\textbf{SEOW HENG FONG, PhD}
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Taufiq Yap Yun Hin, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Tan Yen Ping, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SUHAIZAM SHAHRUL AFFENDY BIN SUHAIMI

Date: 30/May/2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Catalysis in General
 1.1.1 Catalyst and Its Application in the Industry
 1.1.2 Catalysts for Selective Oxidation of Light Alkanes
1.2 Catalysis and Nanotechnology
1.3 Sonochemistry
1.4 Problem Statement
1.5 Objectives of Study

2 LITERATURE REVIEW

2.1 Vanadium Pentoxide
 2.1.1 The Synthesis and Application of Nanosized Vanadium Pentoxide
 2.1.2 The Role of Mineralizer
2.2 Vanadium Phosphate Catalyst (VPO)
2.3 Preparation of Vanadium Phosphate Catalyst (VPO)
 2.3.1 Conventional Method for Preparation of VOHPO₄·0.5H₂O
 2.3.2 New Modification to the Preparation Method of VOHPO₄·0.5H₂O
2.4 The Role of P/V Ratio, V and O Species in VPO Catalysts
 2.4.1 The Role of P/V Ratio
 2.4.2 Effect of Different Oxidation State of Vanadium (V) Species
 2.4.3 Role of Active Oxygen (O) Species
2.5 Selective Oxidation of n-Butane to MA
3 MATERIALS AND METHODS
3.0 Materials
3.1 Preparation of V$_2$O$_5$ using Sonication Method
3.2 Preparation of Vanadium Phosphate (VPO) Catalyst
3.3 Activation of Catalyst
3.4 Physical and Chemical Characterization Method
3.4.1 X-ray Diffraction (XRD) Analysis
3.4.2 Brunauer-Emmett-Teller (BET) Surface Area Measurement
3.4.3 Elemental Analysis using ICP-AES
3.4.4 Volumetric Titration Method
3.4.5 Scanning Electron Microscopy (SEM)
3.4.6 Transmission Electron Microscopy (TEM)
3.4.7 Temperature-programmed Reduction (H$_2$-TPR)
3.5 Catalytic Test

4 RESULTS AND DISCUSSION
4.1 Characterization of Sonicated Vanadium Pentoxide
4.1.1 X-ray Diffraction (XRD)
4.1.2 Scanning Electron Microscopy (SEM)
4.1.3 Transmission Electron Microscopy (TEM)
4.2 Characterization of VPO Catalyst
4.2.1 X-ray Diffraction (XRD)
4.2.2 BET Surface Area Measurement
4.2.3 Elemental Analysis using ICP-AES and Volumetric Titration Method
4.2.4 Scanning Electron Microscopy (SEM)
4.2.5 Temperature-programmed Reduction (TPR in H$_2$/Ar)
4.2.6 Selective Oxidation of n-Butane

5 CONCLUSION

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF SEMINAR/CONFERENCE/WORKSHOP ATTENDED
LIST OF PUBLICATION