UNIVERSITI PUTRA MALAYSIA

PROGRAMMABLE MULTI-BLADDER PNEUMATIC TOURNIQUET CUFF

AMIR MOHAMMAD EBRAHIMI TAJADDOD

ITMA 2012 6
PROGRAMMABLE MULTI-BLADDER PNEUMATIC TOURNIQUET CUFF

By

AMIR MOHAMMAD EBRHIMI TAJADDOD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the degree of Master of Science

June 2012
To my beloved family
Father and Mother
PROGRAMMABLE MULTI-BLADDER PNEUMATIC TOURNIQUET CUFF

By

AMIR MOHAMMAD EBRAHIMI TAJADDOD

June 2012

Chairman: Assoc. Prof. Abdul Rahman bin Ramli, PhD

Faculty: Institute of Advanced Technology

Pneumatic Tourniquet cuff device is used in limb orthopedic surgery especially in the upper limb to provide a bloodless field it can be obscured by blood. The tourniquet cuff occludes both venous and arterial supply. In the process there is also compression of the nerve and this can result in pneumatic tourniquet cuff system paralysis. When the operation is done under regional or local anesthesia the patient may experience discomfort at the site of application. This shortens the duration of the pain tolerance and hence lengthy operation can not be carried out under local or regional anesthesia. Since many operations may be carried out under local or regional anesthesia, a pneumatic tourniquet cuff system had been designed which may help to increase the pain tolerance. The multicompartent pneumatic tourniquet cuff system with multiple bladders each with its own pumps to inflate and deflate each tourniquet cuff is implemented to produce a bloodless field. A microcontroller controls each tourniquet cuff to be inflated and deflated. The pressure effect on the
underlying structures is then reduced while maintaining a bloodless field. This tourniquet cuff system comprises of pump unit, microcontroller and a cuff with three compartments. The pump unit is AC powered operates to inflate at a preset pressure. There is a valve and a pressure transducer which is responsible to maintain the pressure at a preset level. Depending on the signal received from the microcontroller the sequence of open and close the three valves are regulated. The tourniquet had 3 compartments non-structuring fabric is used to form the three compartments into 3 bladders are inserted. The bladder is a sealed bladder with only inlet or outlet which is provided by the tubing. The operation of the system is controlled by a microcontroller. This unit is turned on and the pressure required is set. The inflate button is turned on. Based on the programming done the inflation of the proximal tourniquet followed by the middle and distal tourniquet is done followed by the reverse sequence, thus maintaining the occlusion to provide a bloodless field but relieving pressure at the site of the tourniquet. Hence reducing the discomfort and relieving the pressure on the underlying structures especially the nerve.
Alat manset penasak darah berisi udara digunakan dalam pembedahan ortopedi lengan terutamanya dalam lengan atas ke kawasan tidak berdarah untuk menggambarkan struktur minit yang digelapkan oleh darah. Manset penasak darah ini menutup jalan kedua-dua pembekalan vena dan arteri. Dalam process ini terdapat juga kemampatan urat saraf dan ini boleh mengakibatkan kelumpuhan sistem manset berisi udara. Semasa pembedahan ini dijalankan dalam keadaan pembiusan kedaerahan atau setempat pesakit mungkin mengalami ketidakselesaan pada sisi pemakaian. Ini memendekkan jangka masa kesabaran sakit dan oleh kerana itu banyak pembedahan tidak dapat dijalankan dalam keadaan pembiusan kedaerahan atau setempat. Oleh sebab banyak pembedahan mungkin dijalankan dalam keadaan pembiusan kedaerahan atau setempat, sistem manset penasak darah berisi udara yang
ACKNOWLEDGEMENT

This thesis is part of requirement for achievement of the MSc degree, at ITMA University Putra Malaysia. The time I have spent on this thesis is a very important in my life. I have learned a lot, both personally and professionally. At first I want to pray to Allah Sobhanahu VA taala due to his guidance in all my life. I would like to convey my foremost and sincere thanks to my supervisor; Associate Prof. Dr Abdul Rahman bin Ramli for his dedication to teaching and imparting knowledge was what I found most fascinating. My sincere appreciations are also extended to my co supervisory committee member, Associate Prof. Dr Manohar Arumugan for their never-ending enthusiasm, stimulating discussions and advice.

I must also articulate my heartiest appreciation to Mr. Vahid Rostami, Thank you for the sincere friendship and support.

Finally, my deepest gratitude goes to my family, my wife, father and mother, for being so supportive and helpful. Thank you, thank you and love you all.
I certify that an Examination Committee has met on (.........) to conduct the final examination of Amir Mohammad Ebrahimi Tajaddod on his Master of Science thesis entitled “Programmable Pneumatic Tourniquet Cuff” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Master of Science degree.

Members of the Examination Committee were as follows:

Azmi bin Zakaria, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

M. Iqbal bin Saripan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Syamsiah binti Mashohor, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd Alauddin Mohd Ali, PhD
Professor
Faculty of Engineering
Universiti Kebangsaan Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Abdul Rahman bin Ramli, PhD
Associate Professor
Institute of Advance Technology
Universiti Putra Malaysia
(Chairman)

Manohar Arumugam
Associate Professor
Faculty of Medicine
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institutions.

AMIR M.E.TJADDOD

Date : 29 June 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction 1
1.2 Problem statements 2
1.3 Objectives 3
1.4 Scope of research 4
1.5 Significance of the research 5
1.6 Organization of the thesis 7

2 LITERATURE REVIEW

2.1 Introduction 9
2.2 Pneumatic and non-pneumatic tourniquet cuffs 9
2.2.1 The pneumatic tourniquet cuff 11
2.2.2 Modern pneumatic tourniquet cuff system 16
2.3 History of tourniquet cuff system 18
2.3.1 Limp occlusion pressure 22
2.4 Pneumatic cuff location relative to injury problem 24
2.4.1 Cuff shape relative in problem 25
2.4.2 Cuff length problem in occlusion 27
2.4.3 Recommendations cuff standard size 30
2.4.4 Cuff width and pressure transmission 31
2.4.5 Padding under the cuff for reduces wrinkling, pinching 32
2.5 Patient systolic blood pressure 32
2.5.1 Determining appropriate cuff pressure 33
2.5.2 Complication with use of tourniquet research problem 33
2.5.3 Nerve injuries under the cuff 36
2.6 The Oscillometer principle 37
2.6.1 Pressure versus time 37
2.6.2 Pressure versus frequency 38
2.6.3 Cuff pressure sampling accuracy 39
2.6.4 Preventive measures 40
2.7 Pressure sores and chemical burns 40
2.7.1 Identify hazard and associated with conventional surgery 40
2.7.2 Other identification of complications 44
2.7.3 Effect of pressure and ischemia on muscle problem 45
2.7.4 Hazards of the tourniquet in repetition 46
2.8 Tourniquet in the first AID 47
 2.8.1 Pneumatic tourniquet cuffs and latest technology 50
 2.8.2 The oscillometer sensor tourniquet pressure variations and
 analysis the pressure with oscillometer 51
2.9 Summary 54

3 METHODOLOGY
 3.1 Introduction 55
 3.2 Micro advantages and software design and flowchart 56
 3.2.1 Inspection of tourniquet cuffs before used PpTc 57
 3.2.2 Fault of system in control PTC usage and solution 60
 3.2.3 Electromechanical air pump 63
 3.2.4 Structure of the method with detail component 63
 3.2.5 Description of the method 64
 3.3 Diagram of circuit tourniquet method 67
 3.3.1 Brief description of components PpTc 69
 3.3.2 Pneumatic tourniquet cuff with two bladders 72
 3.3.3 Valve conception 73
 3.4 Pressure calculation 75
 3.4.1 Equation related pressure volume and temperature 76
 3.4.2 Flowchart of tourniquet inflates and deflates sequence 78
 3.4.3 Flowchart for PpTc with four tubes performance 83
 3.4.4 Tourniquet cuff scheduling table by scheduling table by
 Specific parameter 85
 3.5 Data sampling 88
 3.5.1 Sampling population 88
 3.5.2 Sampling frame 88
 3.5.3 Sampling unit 88
 3.5.4 Sampling methods 88
 3.5.5 Sampling size 88
 3.5.6 Instruments and data collection 90
 3.6 Data collection technique 91
 3.6.1 Quality control 93
 3.7 Independent and dependent variable 94
 3.7.1 Limitations 95
 3.8 Summary 95

4 RESULT AND DISCUSSION
 4.1 Introduction 96
 4.2 Data analysis 97
 4.2.1 Response rate 98
 4.2.2 Association between types of tourniquet and
 duration of pain tolerance 98
 4.3 Functional verification of the tourniquet cuffs
 with parameter table 102
4.3.1 Analysis a (PpTc) cuffs method system 106
4.3.2 comparing the performance of (PpTc) with normal cuff 112
4.4 The “standard pressure” and discussion 113
4.5 Gap in (PTC) and proved with PpTc 115
4.6 Percentage of inflation/deflation bladders in Peptic 118
4.7 Summary 120

5 CONCLUSION
5.1 Conclusions and discussion 121
5.2 Recommendation 123
FUTUREWORK 124

REFERENCES 125
APPENDICES 133
BIODATA OF STUDENT 154