ROOT COLONIZATION AND INDUCTION OF PATHOGENESIS-RELATED GENES BY PSEUDOMONAS AERUGINOSA STRAIN UPMP3 IN OIL PALM

SATHYAPRIYA A/P HAMID

ITA 2012 6
ROOT COLONIZATION AND INDUCTION OF PATHOGENESIS-RELATED GENES BY PSEUDOMONAS AERUGINOSA STRAIN UPMP3 IN OIL PALM

SATHYAPRIYA A/P HAMID

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2012
DEDICATION

Special dedication to:

My beloved parents, Mr. and Mrs. Hamid Malliga

sister, Ms. Devisri

and

brothers, Mr. Suriyaraj, Mr. Sathis Kumar and Mr. Heayma Raj
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ROOT COLONIZATION AND INDUCTION OF PATHOGENESIS-RELATED GENES BY PSEUDOMONAS AERUGINOSA STRAIN UPMP3 IN OIL PALM

by

SATHYAPRIYA A/P HAMID

February 2012

Chairman: Wong Mui Yun, PhD

Institute: Institute of Tropical Agriculture

Basal stem rot (BSR) disease caused by *Ganoderma boninense* is the most destructive disease in oil palm plantations. The existing control measures for BSR disease such as mechanical, chemical and cultural practices have not been proven satisfactorily. Hence, BSR disease control is preferably achieved within the host plant through induction of resistance. Disease resistance induced by endophytes is effective under field conditions and offers a natural mechanism for biological control of plant disease. The efficient root colonization, proliferation *in situ* and persistence *in planta* have been emphasized on the selection of endophytes in disease control. To date, no study on colonization pattern of endophytic bacteria and endophytic bacteria-induced disease resistance has been reported in oil palm. Thus, the objectives of this study were (i) to tag the selected endophytic bacteria with β-glucuronidase gene and green fluorescent protein to facilitate oil palm root
colonization study by selected endophytic bacteria, (ii) to study the root colonization pattern of selected endophytic bacteria and (iii) to detect pathogenesis-related (PR) genes induced by selected endophytic bacteria in oil palm. Basic Local Alignment Search Tool (BLAST) analysis of recA gene sequence from *Pseudomonas aeruginosa* strain UPMP3 showed that *P. aeruginosa* strain UPMP3 shared 99% similarity with the clinical strain, *P. aeruginosa* PAO1. Similarly, *Burkholderia cepacia* strain UPMB3 had 99% similarity with *B. cepacia* strain LMG 14087 and *B. cepacia* strain ATCC17759, strains belonging to genovar I, which is related to non-clinical sources. On the other hand, the absence of gusA gene in both, *P. aeruginosa* strain UPMP3 and *B. cepacia* strain UPMB3 demonstrated that tagging these strains with gusA was necessary in order to study their root colonization patterns in oil palm roots. For *P. aeruginosa* strain UPMP3, the bacterial cells treated with sterile double distilled water and 10% (v/v) glycerol following electroporation at the field strength 18 kV/cm resulted in transformation efficiency of ca 1 x 10^7 transformants/µg DNA. Meanwhile, gene transfer in *B. cepacia* strain UPMB3 was done via biparental mating and resulted in transconjugation efficiency of ca 1 x 10^4 transconjugants/donor CFU. However, tagged *B. cepacia* strain UPMB3 was not selected for further study due to plasmid instability. As the preliminary study of endophytic root colonization by tagged *P. aeruginosa* strain UPMP3 (stated as *P. aeruginosa* strain UPMP3::pHRGFPGUS) in 14 days showed promising results, the subsequent experiment was done with a more thorough study of colonization over 28 days. For epiphytic colonization, the rate increased from 5.76 log_{10} CFU g^{-1} FW to 8.19 log_{10} CFU g^{-1} FW while the endophytic colonization increased from 4.10 log_{10} CFU g^{-1} FW to 6.23 log_{10} CFU g^{-1} FW, over 28 days. Confocal laser scanning microscopic analysis of oil palm roots treated with treated
P. aeruginosa strain UPMP3::pHRGFPGUS showed that this strain colonized the root elongation zones and lateral root emergence sites after inoculation. Following its ingress, *P. aeruginosa* strain UPMP3::pHRGFPGUS progressed from rhizodermis to exodermis and subsequently to cortical cells intercellularly. Then, the progression continued to the endodermis and finally the xylem vessels and pith. Besides, this strain was shown to associate itself with the cortical cells and vascular tissues of oil palm roots. Induction of pathogenesis-related genes, *chitinase* and *β-1, 3 glucanase* by *P. aeruginosa* strain UPMP3 was studied in oil palm roots in the absence of pathogen. *Chitinase* and *β-1, 3 glucanase* were induced with increasing period after inoculation and showed a peak value at 5 days after inoculation (DAI) and 7 DAI, respectively. The efficacy of *P. aeruginosa* strain UPMP3 in controlling BSR in oil palm seedlings was further screened in the glasshouse. When tested on oil palm seedlings inoculated with *Ganoderma boninense* PER71, *P. aeruginosa* strain UPMP3 suppressed *G. boninense* PER71 compared to the control with disease reduction of 78.36%. The excellent root colonization of *P. aeruginosa* strain UPMP3 coupled with the activation of defence mechanism in oil palm suggest that this strain could be used as the biocontrol agent against *G. boninense*. However, the use of *P. aeruginosa* strain UPMP3 as the biocontrol agent in agriculture has to be strictly monitored due to its potential in causing opportunistic infections in humans.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KOLONISASI AKAR DAN PENCETUSAN GEN YANG BERKAITAN DENGAN PATOGENESIS OLEH PSEUDOMONAS AERUGINOSA STRAIN UPMP3 PADA KELAPA SAWIT

oleh

SATHYAPRIYA A/P HAMID

Februari 2012

Pengerusi: Wong Mui Yun, PhD

Institut: Institut Pertanian Tropika

Penyakit Reput Pangkal (BSR) yang disebabkan oleh Ganoderma boninense merupakan penyakit yang paling merbahaya di ladang kelapa sawit. Langkah pengawalan penyakit menggunakan kaedah sedia ada seperti amalan mekanikal, kimia dan kultur terbukti tidak memuaskan. Oleh itu, kawalan penyakit ini sebaik-baiknya dicapai melalui pencetusan rintangan perumah. Rintangan penyakit yang dicetus oleh endofit adalah berkesan dan menawarkan mekanisme semula jadi untuk kawalan biologi penyakit pada tumbuhan. Pengkolonian akar yang cekap, pebiakan ‘in situ’ dan pengekalan dalam tumbuhan merupakan aspek yang ditekankan dalam pemilihan endofit pengawal penyakit. Sehingga kini, tiada kajian dilaporkan mengenai corak kolonisasi bakteria endofit dan rintangan penyakit yang dicetuskan oleh bakteria endofit pada pokok kelapa sawit. Oleh itu, objektif kajian ini adalah (i) untuk menanda bakteria endofit terpilih dengan gen ‘β-glucuronidase’ dan ‘green
fluorescent protein’ bagi memudahkan kajian pengkolonian akar kelapa sawit oleh bakteria endofit terpilih, (ii) untuk mengkaji corak kolonisasi akar oleh bakteria endofit terpilih dan (iii) untuk mengesan beberapa gen yang berkaitan dengan patogenesis yang dicetus oleh bakteria endofit terpilih pada kelapa sawit. Analisis ‘Basic Local Alignment Search Tool’ (BLAST) ke atas nukleotid gen recA daripada *P. aeruginosa* ‘strain’ UPMP3 telah menunjukkan bahawa *P. aeruginosa* ‘strain’ UPMP3 mempunyai persamaan sebanyak 99% dengan ‘strain’ klinikal iaitu *P. aeruginosa* PAO1. *Burkholderia cepacia* strain UPMB3 pula mempunyai 99% persamaan dengan *B. cepacia* strain LMG 14087 dan *B. cepacia* strain ATCC17759, iaitu ‘strain’ yang tergolong dalam genovomar I, di mana ia selalu dikaitkan dengan sumber tidak klinikal. Ketidakhadiran gusA dalam *P. aeruginosa* ‘strain’ UPMP3 dan *B. cepacia* ‘strain’ UPMB3 menunjukkan bahawa kedua-dua bakteria harus ditanda dengan gusA untuk mengkaji corak kolonisasi akar pokok kelapa sawit. Bagi *P. aeruginosa* ‘strain’ UPMP3, sel-sel bakteria yang telah dirawat dengan air suling steril dwipenyulingan dan 10% (v/v) gliserol diikuti dengan elektroporasi pada kuasa bidang 18 kV/cm telah menghasilkan kecekapan transformasi sebanyak 1 x 10^7 ‘transformants’/µg DNA. Sementara itu, pemindahan gen dalam *B. cepacia* ‘strain’ UPMB3 telah dilakukan melalui pengawanan dua induk, di mana ia telah menghasilkan kecekapan konjugasi silang sebanyak 1 x 10^4 ‘transconjugants’/penderma CFU. Walau bagaimanapun, *B. cepacia* ‘strain’ UPMB3 tidak dipilih untuk kajian lanjutan berikutan ketidakstabilan plasmid. Oleh kerana kajian awal ke atas kolonisasi akar kelapa sawit oleh *P. aeruginosa* ‘strain’ UPMP3 yang telah ditanda (dinyatakan sebagai *P. aeruginosa* ‘strain’ UPMP3:: pHRGFPGUS) dalam 14 hari telah menunjukkan keputusan yang meyakinkan, uji kaji yang seterusnya telah dilakukan dengan lebih teliti selama 28 hari. Kadar
kolonisasi epifit telah meningkat daripada $5.76 \log_{10} \text{CFU g}^{-1} \text{FW}$ kepada $8.19 \log_{10} \text{CFU g}^{-1} \text{FW}$ manakala kolonisasi endofit telah meningkat daripada $4.10 \log_{10} \text{CFU g}^{-1} \text{FW}$ kepada $6.23 \log_{10} \text{CFU g}^{-1} \text{FW}$, dalam 28 hari. Analisis imej mikroskop pengimbasan laser ‘confocal’ menunjukkan bahawa bakteria ini telah mengkoloni zon pemanjangan akar dan tapak kemunculan akar sisi selepas inokulasi. Berikut kemasukan, *P. aeruginosa* ‘strain’ UPMP3::pHRGFGUS telah maju dari ‘rhizodermis’ ke eksodermis dan seterusnya sel kortek secara ‘intercellular’. Kemudian, ia maju ke endodermis dan akhirnya tisu vaskular termasuk xilem dan ‘pith’. Selain itu, ‘strain’ ini telah menyekutukan dirinya dengan sel-sel kortikal dan tisu vaskular akar kelapa sawit. Pencetusan gen yang berkaitan dengan patogenesis iaitu *chitinase* dan $\beta-1, 3 \text{glucanase}$ di dalam akar kelapa sawit oleh *P. aeruginosa* ‘strain’ UPMP3 telah dikaji tanpa kehadiran patogen. *Chitinase* dan $\beta-1, 3 \text{glucanase}$ telah dicetus dengan masa selepas inokulasi dan menunjukkan nilai puncak pada 5 dan 7 hari selepas inokulasi, masing-masing. Seterusnya, keberkesanan *P. aeruginosa* ‘strain’ UPMP3 dalam kawalan penyakit reput pangkal pada anak benih kelapa sawit dikaji di rumah kaca. Apabila diuji ke atas anak benih kelapa sawit yang diinokulat dengan *Ganoderma boninense* PER71, *P. aeruginosa* ‘strain’ UPMP3 telah mengawal penyakit reput pangkal dengan pengurangan penyakit sebanyak 78.36%. Keupayaan untuk mengkoloni akar yang baik serta pengaktifan mekanisme pertahanan dalam kelapa sawit mencadangkan bahawa *P. aeruginosa* ‘strain’ UPMP3 boleh digunakan sebagai agen kawalan biologi terhadap *G. boninense*. Namun, penggunaan *P. aeruginosa* ‘strain’ UPMP3 sebagai agen kawalan biologi dalam bidang pertanian hendaklah dipantau rapi kerana ia berpotensi menyebabkan jangkitan pada manusia.
ACKNOWLEDGEMENTS

First and foremost all thanks are due to Lord Krishna, the beneficent and merciful
who gave me the capability and strength to accomplish this project.

I would like to extend deepest gratitude and appreciation to my supervisory
committee members, Dr Wong Mui Yun, Prof Sariah Meon and Prof Madya Datin
Dr Siti Nok Akmar Abdullah for their wise and instructive supervision, valuable
advice and guidance, continuous support and encouragement which attributed to the
completion of this project.

I also wish to thank all staff of Institute of Tropical Agriculture and Department of
Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia for their patience,
kindness and providing the facilities to carry out this project. Sincere appreciation
and thanks are extended to Prof. Dr. Raha Abdul Rahim, who provided the facilities
for electrotransformation.

I am grateful to Agro-Biotechnology Institute, Ministry of Science, Technology and
Innovation, Malaysia who funded this project. My deepest gratitude is also extended
to Malaysian Palm Oil Board (MPOB) for providing oil palm ramets. Special thanks
are extended to Prof. Dr. Humberto J.O. Ramos (UFPR, Curitiba, Brazil) for
providing $pHRGFPGUS$ plasmid and Dr. Benjamin C Stark (Illinois Institute of
Technology, USA) for his helpful discussions.
I wish to express my heartiest appreciation and sincerest gratitude to my lovable parents, Mr. and Mrs. Hamid Malliga, sister Miss Devisri, and brothers, Mr. Suriyaraj, Mr. Sathis Kumar and Mr. Heayma Raj, who have always supported me with endless love, continuous encouragement and patience.

Last but not least, I am grateful to all friends of mine, both Malaysians and other nationalities for their kindness, help as well as for making my entire academic life amusing and enjoyable.
I certify that an Examination Committee has met on 20th February 2012 to conduct the final examination of Sathyapriya a/p Hamid on her Master of Science thesis entitled “Root colonization and induction of pathogenesis-related genes by Pseudomonas aeruginosa strain UPMP3 in oil palm (Elaeis guineensis Jacq.)” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Master of Science.

Members of the examination Committee were as follows:

Tan Yee How, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Halimi Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Radziah Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Thong Kwai Lin, PhD
Professor
Faculty of Science/ Institute of Biological Sciences
Universiti Malaya
Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
University Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Wong Mui Yun, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Sariah Meon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Siti Nor Akmar Abdullah, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

__

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SATHYAPRIYA A/P HAMID
Date: 20 February 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION** 1

2. **REVIEW OF LITERATURE** 5
 2.1 Oil palm and Its Economic Importance in Malaysia 5
 2.2 Basal Stem Rot (BSR) in Oil Palm 6
 2.2.1 Basal Stem Rot (BSR) Incidence in Malaysia 6
 2.2.2 Symptoms of the Disease 8
 2.2.3 *Ganoderma* spp. as the Causal Pathogen 9
 2.2.4 Disease Initiation and Spread of Infection in Oil Palm 10
 2.2.5 Disease Control Strategies 11
 2.3 Induced Resistance in Plants 15
 2.3.1 Systemic Acquired Resistance (SAR) 16
 2.3.2 Induced Systemic Resistance (ISR) 18
 2.3.3 Pathogenesis-related (PR) proteins in Induced Resistance 21
 2.4 Bacterial Endophytes 24
 2.4.1 Bacterial Endophyte-Plant Interactions 25
 2.4.2 Bacterial Endophytic Root Colonization and Distribution Within Hosts 27
 2.5 *Pseudomonas* spp. 29
 2.5.1 *Pseudomonas* sp. as the Biocontrol Agent 30
 2.6 *Burkholderia* spp. 31
 2.6.1 *Burkholderia cepacia* Complex as a Biocontrol Agent 32
 2.7 Reporter Genes 34
 2.7.1 β-Glucuronidase 34
 2.7.2 Green Fluorescent Protein 36

3. **MATERIALS AND METHODS** 39
 3.1 Bacterial Gene Tagging of *Pseudomonas aeruginosa* strain UPMP3 and *Burkholderia cepacia* strain UPMB3 with *gfp* and *gusA* 39
 3.1.1 Molecular Verification of *P. aeruginosa* strain UPMP3 and *B. cepacia* strain UPMB3 Using xiv
Polymerase Chain Reaction (PCR) Method

3.1.1.1 Genomic DNA Extraction from Bacteria
3.1.1.2 Analysis of DNA with Gel Electrophoresis
3.1.1.3 PCR Amplification of recA Gene

3.1.2 Detection of β-glucuronidase (GUS) Activity in P. aeruginosa strain UPMP3 and B. cepacia strain UPMB3

3.1.3 Determination of Antibiotic Susceptibility and Resistance in P. aeruginosa strain UPMP3 and B. cepacia strain UPMB3

3.1.4 Fluorescent and GUS labeling of P. aeruginosa strain UPMP3 and B. cepacia strain UPMB3

3.1.4.1 Electrotransformation of P. aeruginosa strain UPMP3 with gfp and gusA
3.1.4.2 Conjugal Gene Transfer in B. cepacia strain UPMB3 Through Biparental Mating
3.1.4.3 Verification of Transformants and Transconjugants
3.1.4.4 Plasmid stability Under Non-selective Conditions
3.1.4.5 Growth Comparison of Wild-Type and Transformants of P. aeruginosa strain UPMP3

3.1.4.6 Growth Comparison of Wild-Type and Transconjugants of P. aeruginosa strain UPMP3

3.2 Root Colonization and Pathogenesis-Related Responses Induced By Pseudomonas aeruginosa::pHRGFPGUS in Oil Palm Roots

3.2.1 Preliminary Experiment on Endophytic Colonization of P. aeruginosa strain UPMP3::pHRGFPGUS in Oil Palm Roots over 14 Days

3.2.1.1 Experimental Design
3.2.1.2 Rooting and Inoculating the Oil Palm Seedlings
3.2.1.3 Proliferation and Endophytic Colonization of P. aeruginosa strain UPM::pHRGFPGUS

3.2.2 Root Colonization and Detection of Pathogenesis-related Genes Induced By P. aeruginosa strain UPMP3 in Oil Palm over 28 Days

3.2.2.1 Experimental Design
3.2.2.2 Inoculation and Growth of Oil Palm Ramets
3.2.2.3 Proliferation and Root Colonization of P. aeruginosa strain UPMP3::pHRGFPGUS
3.2.2.3.1 Enumeration of Epiphytic Bacterial Population
3.2.2.3.2 Enumeration of Endophytic Bacterial Population
3.2.2.3.3 Confocal Laser Scanning Microscopy

3.2.3 Detection of Pathogenesis-related Genes Induced By *P. aeruginosa* strain UPMP3::pHRGFPGUS in Oil Palm

3.2.3.1 Total RNA Extraction and Purification
3.2.3.2 Synthesis of cDNA
3.2.3.3 Amplification of cDNA Template
3.2.3.4 Analysis of Total RNA, cDNA and PCR Products with Gel Electrophoresis
3.2.3.5 Nucleotide Sequence Analysis

3.2.4 Disease Incidence Study on Oil Palm Seedlings Infected with *Ganoderma boninense* PER71 with the Presence of *P. aeruginosa* strain UPMP3

3.2.4.1 Experimental Design
3.2.4.2 Preparation of *G. boninense* PER71 cultures
3.2.4.3 Preparation of Inoculum on Rubber Wood Blocks
3.2.4.4 Inoculation of Oil Palm Seedlings with *G. boninense* PER71 Infected Rubber Wood Blocks
3.2.4.5 Disease Assessment

4 RESULTS

4.1 Bacterial Gene Tagging of *Pseudomonas aeruginosa* strain UPMP3 and *Burkholderia cepacia* strain UPMB3 with *gfp* and *gusA*

4.1.1 Molecular Verification of *Pseudomonas aeruginosa* strain UPMP3 and *Burkholderia cepacia* strain UPMB3 Using PCR Method
4.1.2 Detection of β-glucuronidase (GUS) Activity in *P. aeruginosa* strain UPMP3 and *B. cepacia* strain UPMB3
4.1.3 Determination of Antibiotic Susceptibility and Resistance in *P. aeruginosa* strain UPMP3 and *B. cepacia* strain UPMB3
4.1.4 Fluorescent and GUS labeling of *P. aeruginosa* strain UPMP3 and *B. cepacia* strain UPMB3

4.1.4.1 Electrotransformation of *P. aeruginosa* strain UPMP3 with *gfp* and *gusA* and Verification
4.1.4.2 Conjugal gene transfer in *B. cepacia* strain UPMB3 through biparental mating and Verification
4.1.4.3 Plasmid Stability Under Non-selective Conditions

4.1.4.4 Growth Comparison of Bacterial Transformants and the Wild-type of *P. aeruginosa* strain UPMP3

4.2 Root Colonization and Pathogenesis-Related Responses Induced By *Pseudomonas aeruginosa* strain UPMP3 in Oil Palm Roots

4.2.1 Preliminary Experiment on Endophytic Colonization of *P. aeruginosa* strain UPMP3::pHRGFPGUS in Oil Palm Roots

4.2.1.1 Enumeration of Bacteria

4.2.1.2 Root Colonization Pattern of *P. aeruginosa* strain UPMP3::pHRGFPGUS over 14 Days

4.2.2 Root Colonization and Detection of Pathogenesis-related Genes Induced By *P. aeruginosa* strain UPMP3 in Oil Palm over 28 Days

4.2.2.1 Enumeration of Epi- and Endophytic Population of *P. aeruginosa* strain UPMP3::pHRGFPGUS in Oil Palm Ramets

4.2.2.2 Microscopy Observation of Epi- and Endophytic Colonization of *P. aeruginosa* strain UPMP3 in the Roots of Oil Palm Ramets

4.2.2.3 Expression of Pathogenesis-related Genes Induced By *P. aeruginosa* strain UPMP3 in Oil Palm Ramets

4.3 Disease Incidence Study On Oil Palm Seedlings Infected with *Ganoderma boninense* PER71 with the Presence of *P. aeruginosa* strain UPMP3

5 DISCUSSION

5.1 Bacterial Gene Tagging of *Pseudomonas aeruginosa* strain UPMP3 and *Burkholderia cepacia* strain UPMB3 with *gfp* and *gusA*.

5.1.1 Molecular Verification of *P. aeruginosa* strain UPMP3 and *B. cepacia* strain UPMB3 Using Polymerase Chain Reaction (PCR) Method

5.1.2 Detection of β-glucuronidase (GUS) Activity in *P. aeruginosa* strain UPMP3 and *B. cepacia* strain UPMB3

5.1.3 Determination of Antibiotic Susceptibility and Resistance in *P. aeruginosa* strain UPMP3 and *B. cepacia* strain UPMB3

5.1.4 Fluorescent and GUS labeling of *P. aeruginosa* strain UPMP3 and *B. cepacia* strain UPMB3

5.1.4.1 Electrotransformation of *P. aeruginosa*
strains UPMP3 with gfp and gusA, Stability and Growth comparison 97

5.1.4.2 Conjugal Gene Transfer in B. cepacia strain UPMB3 Through Biparental Mating and Stability of Transconjugants 99

5.2 Root Colonization and Induced-related Responses Induced By P. aeruginosa strain UPMP3 in Oil Palm Roots 100

5.2.1 Preliminary Experiment on Endophytic Colonization of P. aeruginosa strain UPMP3::pHRGFPGUS in Oil Palm Roots 100

5.2.1.1 Enumeration of Bacteria 100

5.2.1.2 Root Colonization of P. aeruginosa strain UPMP3::pHRGFPGUS over 14 Days 101

5.2.2 Root Colonization and Detection of Biomarkers Induced By P. aeruginosa strain UPMP3 in Oil Palm Roots over 28 Days 102

5.2.2.1 Enumeration of Epi- and Endophytic Population of P. aeruginosa strain UPMP3 in Oil Palm Ramets 102

5.2.2.2 Microscopy Observation of Epi- and Endophytic Colonization of P. aeruginosa strain UPMP3 in Oil Palm Ramets 103

5.2.2.3 Expression of Pathogenesis-related Genes Induced By P. aeruginosa strain UPMP3 in Oil Palm Ramets 105

5.3 Disease Incidence Study on Oil Palm Seedlings Infected with Ganoderma boninense PER71 with the Presence of P. aeruginosa strain UPMP3 109

6 CONCLUSION 111

REFERENCES 114
APPENDICES 148
BIODATA OF STUDENT 165
LIST OF PUBLICATIONS 166