ROBUST CONTROL CHARTS
FOR CHANGE POINTS DETECTION
IN PRESENCE OF OUTLIERS

By

NG KOOI HUAT

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia, in Fulfilment of the Requirements for the
Degree of Doctor of Philosophy

February 2012
DEDICATIONS

- To my family for having unconditional love for me.

- To my beloved supervisors, lecturers, teachers and friends who uplifted my life.
Abstract of Thesis Presented to the Senate of Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

ROBUST CONTROL CHARTS FOR CHANGE POINTS DETECTION IN PRESENCE OF OUTLIERS

By

NG KOOI HUAT

February 2012

Chairman: Habshah Midi, PhD
Faculty: Institute for Mathematical Research

Control charts are used to detect whether or not a process has changed. When a control chart signals indicating that a process has changed, practitioners must initiate a search for the special cause. However, given a signal from a control chart, practitioners generally do not know what caused the process situation to change or when the process has changed. Identifying the time of the process change would simplify the seeking of the special cause. It is now evident that outliers have great impact on the parameters estimation in the setting of a control chart. The violation of assumption from normality for change point hypothesis testing method can also gravelly mislead the inferential statistics. Hence, the main focus of this research is to take remedial measures for these issues on the occasion that there is a violation of normality assumption and in the presence of contamination. We have presented
a robust individuals control chart in the context of exploratory analysis for the purpose of locating the step change position. This type of chart offers some significant advantages over the existing individuals control chart. It is about adopting the M-Scale estimator into the proposed modified procedure in the estimation of process standard deviation. The results signify that the proposed method offers substantial improvements over the existing method. On the same ground, to further enhance hypothesis testing approach in the presence of outlier for the change point statistics, the Huber Maximum-Type testing method is incorporated into the proposed modified framework. The findings indicate that the proposed approach is more efficient in detecting the correct step change position, both in normal shift and the shift in the existence of disturbances.

We also proposed a robust MM control chart for monitoring the change in process mean when there is a contamination in data collection. The newly proposed control chart is formulated through the use of S-scale estimate, which in turn yields the MM-location estimate, possessing 50% high breakdown point and 95% efficiency when the errors are under normality (Salibian-Barrera, 2004). From the results, it appears to suggest that the proposed robust MM control chart is more reliable and performs superbly in the presence of outliers.

Finally, the new robust subsample-based Modified Biweight A Scale (MBAS) chart which is resistant to outliers is proposed. A novel scale measure, namely the Modified Biweight A (MBAS) scale estimator is incorporated which provides a choice for practitioners who are interested in the detection of permanent shifts in
process variance. It is evident that the proposed chart outperforms the conventional charts when contaminated data are present. In summary, the proposed robust control-charting methodologies appear to efficiently monitor contaminated data situations and process shift, while the classical charts are not a preference for process monitoring where contamination may exist. In this thesis, all the proposed procedures were examined by real data sets and Monte Carlo simulation studies. Comparative studies among the classical and the proposed robust methods reveal that the proposed robust methods are able to rectify the issues in relation to the presence of outliers. On the contrary, the classical approaches seem to perform poorly in these circumstances.
Abstrak Tesis yang Dikemukakan kepada Senat Universiti Putra Malaysia sebagai Memenuhi Keperluan untuk Ijazah Doktor Falsafah

CARTA KAWALAN TEGUH DALAM PENGENALPASTIAN PERUBAHAN KEDUDUKAN TITIK DENGAN KEHADIRAN TITIK TERPENCIL

Oleh

NG KOOI HUAT

Februari 2012

Pengerusi: Habshah Midi, PhD
Fakulti: Institut Penyelidikan Matematik

Kami juga mengemukakan carta kawalan MM yang baharu bagi memantau penukaran dalam proses purata dengan kewujudan pencemaran data. Cadangan carta kawalan yang baharu ini telah menggunakan penganggar jenis S-skala di mana penganggar titik MM yang dikemukakan mempunyai titik musnah yang tinggi sehingga mencapai 50 peratus dan 95 peratus kecekapan apabila ralatnya berada dalam situasi normal. Keputusan menunjukkan bahawa carta kawalan MM lebih diyakini dan berprestassi tinggi dalam keadaan kehadiran titik terpencil.
ACKNOWLEDGEMENTS

I do not have much word to express how I am grateful to my supervisor, Prof. Dr. Habshah Midi, who has the merit of teaching me how to do research and who has transmitted to me her enthusiasm through her activities. Her willingness to share her ideas in research problems, and the energy and time she put in advising my thesis work is highly obliged. I am benefited enormously from her continuous support and confidence throughout my research. Without her help and support, this dissertation would have been impossible. Moreover, her advices and her remarks have proven to be very useful and simulating. I also greatly value her friendship, kindness, and elegant personality. I feel truly privileged to have been her student.

I acknowledge my internal co-supervisors Dr. Jayanthi Arasan and Dr. Bashar Abdul Aziz Majeed Al-Talib, senior lecturers of my institute, for their help. I am indebted to my external co-supervisor Dr. A.H.M. Rahmatullah Imon, Professor of Statistics, Department of Mathematical Sciences, Ball State University, U.S.A., who has helped me a lot by responding my constant volley of electronic messages regarding my research problem. I am truly grateful that I have such a great mentor.

Special thanks to Dr. Sarker, S.K., fellow researcher of my institute, for his important suggestions and cooperation in my research work. His valuable words always inspired me so much. I am very grateful to Dr. Mohd Bakri Adam, Dr. Kuddus and Dr. Hossein for helping me in R and S-Plus programming.
I gratefully acknowledge moral supports of my friends and their continuous encouragement. I remember my friends Arezoo, Saniza, Hossein, Kourash, Askan, Vello, Sohel, NKH, YHK, WTZ, LFP, Lily Wong, KLF, YLK and SHS. Thank you to all my friends for all of your generosity and kindness.

Finally, I would like to thank Universiti Putra Malaysia for the financial support. They have created an excellent environment for my research here. My sincere thanks are extended to all the staff of the Institute for Mathematical Research (INSPEM), UPM, for their cordial assistance during this research work.
I certify that a thesis Examination Committee has met on 29 February 2012 to conduct the final examination of Ng Kooi Huat on his thesis entitled “Robust Control Charts for Change Points Detection in Presence of Outliers” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee are as follows:

Mohd Rizam Bin Abu Bakar, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd Bakri Bin Adam, PhD
Senior Lecturer
Faculty of science
Universiti Putra Malaysia
(Internal Examiner)

Abdul Ghapor Bin Hussin, PhD
Associate Professor
Centre for Foundation Studies
Universiti Malaya
(External Examiner)

Muhammad Hanif Mian, PhD
Professor
Lahore University of Management Sciences
Pakistan
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 April 2012

xi
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Habshah Binti Midi, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Jayanthi Arasan, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

A. H. M. Rahmatullah Imon, PhD
Professor
Ball State University
Muncie, IN 47306, U.S.A.
(Member)

Bashar Abdul Aziz Majeed Al-Talib, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

NG KOOI HUAT

Date: 29 February 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATIONS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of the Study 1
1.2 Importance and Motivation of the Study 3
1.3 Objectives of Study 10
1.4 Plan of the Study 11
1.5 Benefits and Contributions 15

2 LITERATURE REVIEW

2.1 Introduction 17
2.2 Change Point Analysis 17
 2.2.1 Test Statistics 22
 2.2.2 Critical Values 25
2.3 Statistical Process Control 27
 2.3.1 Control Chart 28
 2.3.2 Control Limits 30
 2.3.3 Individuals Chart and Moving Range Chart 31
 2.3.4 Assessing the Performance of Control Charts (Average Run Length) 34
2.4 Robust Statistics 36
 2.4.1 Outliers 40
 2.4.2 Resistance and Robustness of Efficiency 42
 2.4.3 M-Measures of Location 42
 2.4.4 Breakdown Bound 45
 2.4.5 Sample Median 45
 2.4.6 Measures of Scale 46
 2.4.7 Median Absolute Deviation 48
 2.4.8 q-Quantile Range 50
7.2.4 Robust Modified Biweight A Control Chart for Change in Process Variance in the Presence of Disturbances

7.3 Conclusion

7.4 Areas of Further Research

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF PRESENTATIONS
AWARDS