UNIVERSITY PUTRA MALAYSIA

PREVALENCE OF Vibrio cholerae IN COCKLES IN SELANGOR AND PAHANG, MALAYSIA

SUZITA BINTI RAMLI

FSTM 2012 18
PREVALENCE OF Vibrio cholerae IN COCKLES IN SELANGOR AND PAHANG, MALAYSIA

By

SUZITA BINTI RAMLI

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

April 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Master of Science

PREVALENCE OF Vibrio cholerae IN COCKLES IN SELANGOR AND PAHANG, MALAYSIA

By

SUZITA BINTI RAMLI

April 2012

Chairman: Professor Fatimah Abu Bakar, PhD

Faculty: Food Science and Technology

The aim of this study is to determine the presence of Vibrio cholerae in raw cockles (Anadara granosa) sold in wet markets in Selangor and Pahang, Malaysia and to evaluate the survival of V. cholerae using the polymerase chain reaction in combination with the most probable number (MPN-PCR) and the conventional method (growing on the TCBS-biochemical test). In addition, this study attempts to explore the survival of V. cholerae in water, during heat treatment and during the storage of raw cockles. This study is done due to V. cholerae is the etiological agent of cholera which is spread by contaminated food, water or attributed to raw products eaten unprocessed and also commonly found in cockles, thus increase the risk of poisoning potential due to its consumption. A total of 100 samples from 8 different wet markets in Selangor and Pahang were examined for the presence of V. cholerae.

The prevalence of Vibrio spp. between the samples from two different sampling areas was not significantly different (p>0.05). In fact, 74% of the samples from Pahang were found positive of Vibrio spp. contrasting to 69% of samples from Selangor, and the prevalence of V. cholerae was also found to be not significantly
different between samples from Pahang, 56% and Selangor, 59%. As a comparison, 96% of samples were positive, indicating the detection of *V. cholerae* using the MPN-PCR method, while only 65% samples were positive when run under the conventional method. The results of the MPN-PCR analysis showed that the positive detection rate was high, while the results of the conventional method were always negative. With MPN-PCR, the load detected in all samples ranged from <30 up to >24000 MPN/g, but most of the samples (24 samples) contained >24000 MPN/g concentration. The enumeration of *V. cholerae* on TCBS agar was unreliable because of the problem of interference with microflora of similar morphology with *V. cholerae* that had grown in abundance on TCBS.

For the survival of *V. cholerae* in water, raw cockles (uninoculated raw cockles with *V. cholerae*) and water (distilled water) samples were determined. *V. cholerae* can transfer from infected cockles to the surrounding water. The *V. cholerae*’s load in the samples was 24000 MPN/g on the first day of incubation. The density of *V. cholerae*’s load in water environment increased from 0 MPN/g to 2400 MPN/g because the pathogens in the cockle samples were transferred to the water. The presence of *V. cholerae* in distilled water was not only sourced from meat and fluid of infected cockles but also from its shell. In the heat treatment (boiling and grilling) and storage study, two methods of analyses were used, MPN-PCR and conventional method. When boiling the cockles, the result illustrated that there was a significant difference (p≤0.05) for the four temperatures (100 °C, 90 °C, 80 °C and 70 °C) used for both analyses. Cockles need to be cooked for more than 4 minutes in 100 °C boiling water, 5 minutes in 90 °C of water and 6 minutes in 80° C, where the pathogen was no longer detected (<1.00 log CFU/g and <1.00 log MPN/g). When
heated at 70°C, 9 minutes is sufficient to eliminate the *V. cholerae*. In the grilling process, there was also a significant difference (*p*≤0.05) between three temperatures (150 ºC, 200 ºC and 250 ºC) used for both analyses. When cockles are grilled at 150 ºC, they should be cooked for 18 minutes to reduce the *V. cholerae*’s population to <1.00 log CFU/g and <1.00 MPN/g. Similarly, 12 minutes are needed to grill the cockles at 200 ºC and 8 minutes at 250 ºC, where it is sufficient to eliminate the pathogen.

For the storage study, the populations of *V. cholerae* increased when cockles were stored at 10 ºC and 28 ºC with their shell intact (cockles’ meat with shell) and samples with no shell (cockles’s meat only). However, it decreased gradually when stored at 0 ºC for 16 days. During the storage at 0 ºC, the population of the *V. cholerae* in unshelled samples decreased and was significantly lower than the shelled samples for both analyses. During storage at 10 ºC for 10 days, it was observed that *V. cholerae* was able to multiply in both shell and non-shell samples and this shows that 10 ºC storage is not sufficient to inhibit the growth of *V. cholerae*. The *V. cholerae*’s load in non-shelled samples, which were stored at 28 ºC for 20 h, increased higher than the shelled samples. As the conclusion, the *V. cholerae* and *Vibrio* spp.’s loads in cockles are high and the cockles need to be boiled and grilled in sufficient time before consuming, to avoid potential poisoning. In addition, *V. cholerae* can be transferred easily from infected cockles to the surrounding water and can survive in the storage condition (chilled and ambient temperatures). The combined MPN-PCR method is more effective and accurate for the detection of *V. cholerae* over the conventional method.
Tujuan penyelidikan ini adalah untuk mengenalpasti kehadiran bakteria *Vibrio cholerae* pada kerang dari pasar basah di Selangor dan Pahang, Malaysia dan menilai kemandirian dengan menggunakan kaedah gabungan MPN-PCR dan juga kaedah lazim. Selain itu juga, penyelidikan ini adalah untuk mengkaji berkaitan dengan kemandirian *V. cholerae* di dalam air, semasa pemanasan dan juga semasa penyimpanan sejukbeku. Seratus sampel dari 8 pasar basah yang berbeza di Selangor dan Pahang telah diperiksa untuk kehadiran *V. cholerae*.

Kelaziman *V. cholerae* di dua kawasan ini adalah hampir sama. 74% sampel dari pasar basah di Selangor telah didapati positif sementara 69% sampel dari pasar basah di Pahang sementara kelaziman *V. cholerae* juga hampir sama untuk kedua-dua kawasan dengan sampel dari Selangor adalah 59% dan Pahang adalah 56%. Di dalam perbandingan dua kaedah pengenalpastian, 96% adalah positif untuk pengenalpastian *V. cholerae* dengan menggunakan kaedah MPN-PCR berbanding kaedah lazim yang mengenalpasti sebanyak 65%. Dengan kaedah MPN-PCR, kadar
pengenalpastian positif sampel adalah tinggi dan had pengenalpastian adalah rendah sementara keputusan daripada kaedah lazim biasanya negatif. Dengan MPN-PCR, kepadatan patogen yang dikenalpasti pada semua sampel adalah dalam lingkungan ≤ 30 hingga ≥24000 MPN/g. Penghitungan \(V. \textit{cholerae} \) yang dikira di atas agar TCBS adalah tidak tepat kerana masalah kehadiran mikroflora yang mempunyai morfologi yang sama dengan \(V. \textit{cholerae} \) apabila ditumbuhkan di atas agar TCBS.

Untuk kemandirian \(V. \textit{cholerae} \) di dalam air, kedua-dua sampel iaitu kerang (yang tidak disuntik dengan \(V. \textit{cholerae} \)) dan air (air suling) telah dikenalpasti. Untuk sampel kerang, kepadatan \(V. \textit{cholerae} \) adalah 24000 MPN/g untuk hari pertama. Kepadatan \(V. \textit{cholerae} \) dalam air meningkat daripada 0 MPN/g kepada 2400 MPN/g disebabkan perpindahan patogen di dalam kerang kepada air. \(V. \textit{cholerae} \) juga boleh didapati pada kulit kerang. Dalam pemanasan dan penyimpanan sejuk-beku, dua kaedah (MPN-PCR dan kaedah konvensional) telah digunakan. Untuk pemanasan, kerang perlu dimasak lebih 4 minit di dalam 100 °C air mendidih, dalam air bersuhu 90 °C, populasi \(V. \textit{cholerae} \) menurun daripada 5.53 kepada 0.16 log CFU/g dan 1.89 log MPN/g apabila dipanaskan selama 5 minit dan 30 saat, dalam air bersuhu 80 °C, 6 minit mencukupi dan 9 minit diperlukan untuk merebus kerang dalam 70 °C. Dalam proses memanggang, ketiga-tiga suhu digunakan (150 °C, 200 °C dan 250 °C) adalah berbeza (p<0.05) untuk kedua-dua analisis bagi setiap masa. Dalam 150 °C proses memanggang, kerang perlu dimasak lebih 18 minit (<1.00 log CFU/g, MPN/g). Untuk 250 °C, 8 minit, sudah mencukupi dan 12 minit apabila memanggang pada 200 °C. Apabila suhu tinggi digunakan, lebih singkat masa diperlukan untuk membasmi patogen dan selamat untuk dimakan. Lingkungan suhu antara 70 °C -100 °C, boleh digunakan untuk merebus kerang tetapi masa yang
diambil untuk membasmi patogen pada kerang mentah, berbeza berdasarkan suhu yang digunakan. Pemanggangan juga perlu dilakukan pada masa yang berbeza berdasarkan suhu yang digunakan.

ACKNOWLEDGEMENT

Alhamdullillah, thank you to Allah, for the strength that He has given to me, for the wisdom that He granted me, and for the unconditional love that He has shown me, that I am able to pursue and complete my Degree of Master of Science. Without You, I would never have the perseverance to make it until the end.

I would like to dedicate my heartfelt thanks to Professor Dr. Fatimah Abu Bakar as the chairman of my supervisory committee, for the guidance, encouragement and constructive suggestions during the entire study. A million thanks to Professor Dr. Son Radu who has contributed tremendously of his time and expertise in this research and in my study. My gratitude also goes to Dr Ahmed Sahib Abdul Amir as my co-supervisor, who has been giving me the encouragement and advice throughout my research.

Sincere thanks and appreciation are extended to all the support staff of the Faculty Food Science and Technology, especially laboratory staff, En Zulkifli, Ms Fatihah, Mrs Norliza and all my lab mates for their assistance during the laboratory work.

Words could not describe my deepest appreciation to my mum, Mrs. Fatimah Mohd Jasim and all my family members for all their love, encouragement and understanding. Not forgotten to my lovely late father, Mr. Ramli Martin, your loving and encouragement always in my mind. To my labmate, thanks for offering their assistance in my greatest time of need. Lastly, thanks you very much again to all of you that involve in my project. I will remember you all for the rest of my life.
APPROVAL SHEET

I certify that a Thesis Examination Committee has met on **23 April 2012** to conduct the final examination of **Suzita Binti Ramli** on her thesis entitled "**Prevalence of Vibrio cholerae in Cockles in Selangor and Pahang, Malaysia**" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Degree of Master of Science.

Members of the Thesis Examination Committee were as follows:

Name: Jinap Selamat, PhD
Title: Professor
Name of Faculty: Food Science and Technology
(Chairman)

Name: Farinazleen Mohd. Ghazali, PhD
Title: Professor Madya Dr.
Name of Faculty: Food Science and Technology
(Internal Examiner)

Name: Abdul Karim Sabo Mohamed, PhD
Title: Professor Madya Dr.
Name of Faculty: Food Science and Technology
(Internal Examiner)

Name: Mohd. Khan Ayob, PhD
Title: Professor Madya Dr.
Name of Faculty: Science and Technology
Name of Organisation: Universiti Kebangsaan Malaysia
Country: Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of the type of degree. The members of the Supervisory Committee were as follows:

Fatinah Abu Bakar, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Ahmed Saheb Abdul Amir, PhD
Post-Doctoral
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

(BUJANG BIN KIM HUAT, PhD)
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

..
SUZITA BINTI RAMLI
Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL SHEET</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW

2.1 Taxonomy of *Vibrio*
2.2 *Vibrio cholerae*

 2.2.1 Pathogenicity of *Vibrio cholerae*
 2.2.2 Growth factors of *Vibrio cholerae* in seafood
 2.2.3 Sources and transmission of *Vibrio cholerae*
 2.2.4 *Vibrio cholerae* acid tolerance
 2.3 Raw cockles
 2.3.1 The role of raw cockles in transmission of *Vibrio cholerae*
 2.4 Survival of *Vibrio cholerae* through water, during heat treatment and storage
 2.5 Survival of *Vibrio cholerae* at low temperature under starvation condition
 2.6 Cholera
 2.6.1 Cholera as an acute diarrheal illness
 2.7 Isolation and identification of *Vibrio cholerae*
 2.7.1 Culture
 2.7.2 Pre-enrichment media
 2.7.3 Polymerase Chain Reaction

3. OCCURRENCE OF *Vibrio cholerae* AND OTHER *Vibrio* spp. IN RAW COCKLES IN WET MARKETS

3.1 Introduction
3.2 Materials and methods
 3.2.1 Sources of sample
 3.2.2 Sampling procedure and processing of samples
 3.2.3 Biochemical tests
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.4</td>
<td>DNA extraction</td>
<td>30</td>
</tr>
<tr>
<td>3.2.5</td>
<td>PCR amplification</td>
<td>30</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Gel electrophoresis</td>
<td>31</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Statistical analysis</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Results and discussion</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusion</td>
<td>48</td>
</tr>
<tr>
<td>4.</td>
<td>ENUMERATION OF Vibrio cholerae’s DENSITY IN RAW COCKLES</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Materials and Methods</td>
<td>50</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Sources of sample</td>
<td>50</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Density Enumeration by Most Probable number (MPN) technique</td>
<td>50</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Isolation of V. cholerae by conventional method</td>
<td>50</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Molecular analysis</td>
<td>51</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>DNA extraction</td>
<td>51</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>PCR amplification</td>
<td>51</td>
</tr>
<tr>
<td>4.2.4.3</td>
<td>Gel electrophoresis</td>
<td>52</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Statistical analysis</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Results and discussion</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Conclusion</td>
<td>66</td>
</tr>
<tr>
<td>5.</td>
<td>SURVIVAL OF Vibrio cholerae IN DIFFERENT ENVIRONMENT</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>67</td>
</tr>
<tr>
<td>5.2</td>
<td>Materials and Methods</td>
<td>68</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Bacterial culture preparation (for heat treatment and storage study only)</td>
<td>68</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Survival of V. cholerae via water Environment</td>
<td>68</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Survival of V. cholerae during different type of cooking (boiling and grilling)</td>
<td>69</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Effect of storage on survival of V. cholerae in raw cockles</td>
<td>70</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Microbiological analysis</td>
<td>70</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Statistical analysis</td>
<td>71</td>
</tr>
<tr>
<td>5.3</td>
<td>Results and discussion</td>
<td>75</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusion</td>
<td>99</td>
</tr>
<tr>
<td>6.</td>
<td>SUMMARY, GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH</td>
<td>100</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>BIODATA OF THE STUDENT</td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>