UNIVERSITI PUTRA MALAYSIA

BIOSURVEILLANCE OF VIBRIO PARAHAEMLYTICUS IN RAW SALAD VEGETABLES AT PRE-HARVEST, RETAIL AND DOMESTIC KITCHEN LEVELS

TUNUNG ROBIN

FSTM 2012 17
BIOSURVEILLANCE OF \textit{VIBRIO PARAHAEOMOLYTICUS} IN RAW SALAD VEGETABLES AT PRE-HARVEST, RETAIL AND DOMESTIC KITCHEN LEVELS

By

TUNUNG ROBIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

March 2012
Dedicated to God for the love, wisdom and strength

Dedicated to my husband, my son, my family, my extended family and my relatives
for their unconditional love and endless support

Dedicated to my friends for the wonderful friendship, love and joy

Dedicated to everyone whom have invested their lives in my life

~ 💜
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

BIOSURVEILLANCE OF VIBRIO PARAHAEOMOLYTICUS IN RAW SALAD VEGETABLES AT PRE-HARVEST, RETAIL AND DOMESTIC KITCHEN LEVELS

By

TUNUNG ROBIN

March 2012

Chairman: Professor Son Radu, PhD
Faculty: Food Science and Technology

Vibrio parahaemolyticus is known to be one of the leading causes of human gastroenteritis associated with seafood consumption. However recent foodborne outbreaks throughout the world have been intensively linked to consumption of fresh fruits, vegetables and unpasteurized juices, and cross-contamination of raw fruits and vegetables with seafood represents a potential mode of transmission of V. parahaemolyticus to humans. The purpose of this study was to carry out a biosurveillance of V. parahaemolyticus in raw salad vegetables at pre-harvest, retail and domestic kitchen level in Malaysia. A combination of Most Probable Number - Polymerase Chain Reaction (MPN-PCR) method was applied to detect the presence of total V. parahaemolyticus, pathogenic V. parahaemolyticus harboring tdh and trh genes, and to enumerate their density in the samples. The characteristics of V. parahaemolyticus profiles of the strains isolated from vegetables were also assessed by antibiotic resistance and RAPD-PCR. A domestic kitchen simulation study was conducted to provide decontamination data and information for the estimation of the
risk of acquiring vibriosis from consumption of raw vegetables using Quantitative Risk Assessment (QRA) deterministic approach.

From the study, it was revealed that the presence of *V. parahaemolyticus* could be detected in the samples. At pre-harvest level, a total of 146 samples of raw vegetables, soil, water, animal manure and surface swab samples collected from three vegetable farms and three packing houses at Cameron Highlands, Pahang were analyzed. The occurrence of total *V. parahaemolyticus* (toxR) detected was relatively low (13.70%), while the presence of *V. parahaemolyticus* harboring *tdh* and *trh* virulent genes were 1.37% and 0%, respectively. The maximum concentration of total *V. parahaemolyticus* in the samples was 1100 MPN/g, while *V. parahaemolyticus* *tdh*+ was 7.3 MPN/g and *V. parahaemolyticus* *trh*+ was <3 MPN/g. Meanwhile, at retail level, 276 samples of vegetables commonly eaten raw in Malaysia were purchased from two supermarkets and two wet markets located in Selangor, Malaysia and were analyzed. The occurrence of total *V. parahaemolyticus* detected in the vegetables was 20.65%, with concentration range of <3 MPN/g to >2400 MPN/g. Pathogenic *V. parahaemolyticus* *tdh*+ was detected at the rate of 11.96%, while for *V. parahaemolyticus* *trh*+, the prevalence was 10.14%. The maximum density of *V. parahaemolyticus* *tdh*+ and *trh*+ in the samples were 39 MPN/g and 15 MPN/g, respectively. The numbers of total and pathogenic *V. parahaemolyticus* present in the samples from pre-harvest and retail level were found to be lower (maximum of 10^3) than the infectious dose (10^6) that could cause illness in healthy individuals.
At domestic kitchen level, simulation of the handling of raw vegetables in domestic kitchens by washing was designed to imitate real events in domestic kitchens as much as possible to give a realistic quantitative data on how *V. parahaemolyticus* could be reduced by washing procedures. Five washing steps were applied in this simulation, and both naturally and artificially contaminated vegetables were used. The total prevalence of *V. parahaemolyticus* in the naturally contaminated samples was 75.00%, with mean concentration 108.95 MPN/g. It was found that washing by rinsing the vegetables vigorously in collected tap water could reduce the numbers up to 0.58 log reduction compared to washing using other methods, which were lower but still significantly reduced *V. parahaemolyticus* in the vegetables.

A total of 46 *V. parahaemolyticus* isolates were recovered by plating method and confirmed by PCR. None of the isolates were detected to carry virulence genes *tdh* and *trh*. Antibiotic resistance profiling indicated that multi-resistance *V. parahaemolyticus* might be wide-spread in the study area. The isolates showed multi-resistance to as many as 14 antibiotics tested, with 93.48% resistance to Nalidixic Acid and mostly susceptible to Imipinem (4.35% resistance). High Multiple Antibiotic Resistance (MAR) indices were detected in this study, with more than 19.57% of the isolates had a MAR index value of 0.5, indicating that the isolates might originate from sources that were exposed to antibiotics. Clustering of *V. parahaemolyticus* isolates based on RAPD-PCR profiles suggested that most of the strains from the same sampling locations were clustered into the same group, although some strains from different sampling locations were found clustered in the same group.
A preliminary step-wise risk assessment was carried out to estimate the risk (probability of infection leading to illness) posed by *V. parahaemolyticus* from the consumption of raw vegetables in Malaysia, and the estimation was focused on the different races in Malaysia due to the differences in the consumption pattern of raw vegetables among the races. An exponential dose-response model was used. The estimated annual number of cases of vibriosis acquired from the consumption of raw vegetables was 20,930 cases per 100,000 Malaysian populations. The risk was higher for Malays (31,496 cases per 100,000 population), followed by Chinese (9,137 cases per 100,000 population), and Indians (2,568 cases per 100,000 population). After washing vegetables by rinsing in tap water (highest log reduction), the risk of illness was reduced from 20,930 cases per 100,000 Malaysian populations to 20,853 cases per 100,000 populations.

The results suggest that raw vegetables act as a transmission route for *V. parahaemolyticus* and thus pose a risk for consumers. It is recommended to carry out a future cross-contamination study to determine the source or point of contamination along the distribution line of vegetable produce. Further studies on a bigger scale are also recommended for a better understanding on the presence of *V. parahaemolyticus* in raw vegetables and the risks involved when consuming raw vegetables.
PENGESAHAN TESIS DAN KANDARAN

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMANTAUAN BIO VIBRIO PARahaemolyticus DALAM SAYURAN MENTAH PADA TAHAp LADANG, RUNCIT DAN DAPUR

Oleh

TUNUNG ROBIN

Mac 2012

Pengerusi : Profesor Son Radu, PhD

Fakulti : Sains dan Teknologi Makanan

Vibrio parahaemolyticus diketahui sebagai salah satu penyebab utama gastroenteritis manusia yang dikaitkan dengan pengambilan makanan laut. Walaubagaimanapun, kebelakangan ini kes wabak penyakit di seluruh dunia banyak dikaikan dengan pengambilan buah-buahan, sayuran dan jus segar, dan kontaminasi bersilang antara buah-buahan dan sayuran mentah dengan makanan laut menggambarkan potensi mod transmisi *V. parahaemolyticus* kepada manusia.

Tujuan kajian ini adalah untuk menjalankan pemantauan bio *V. parahaemolyticus* dalam sayuran mentah pada tahap ladang, runcit dan dapur domestik di Malaysia. Suatu kombinasi kaedah Jumlah Paling Mungkin – Reaksi Polimer Berantai (MPN-PCR) telah diaplikasi untuk mengesan kehadiran *V. parahaemolyticus* keseluruhan, *V. parahaemolyticus* berpatogen yang mempunyai gen *tdh* dan *trh*, dan untuk mengira kepekatannya dalam sampel-sampel tersebut. Karakter *V. parahaemolyticus* juga dinilai dengan menggunakan profil kerintangan antibiotik dan RAPD-PCR isolat-isolat dari sayuran tersebut. Kajian simulasi dapur domestik dijalankan untuk
menghasilkan data dan informasi untuk penganggaran risiko mendapatkan vibriosis
daripada memakan sayuran mentah menggunakan pendekatan deterministik
Penilaian Risiko Kuantitatif (QRA).

Daripada kajian ini, kehadiran *V. parahaemolyticus* dapat dikesan di dalam sampel
tersebut. Pada tahap pra-tuaian, sejumlah 146 sampel iaitu sayuran, tanah, air, dan
swab permukaan diperoleh dari tiga ladang sayuran dan tiga pusat pembungkusan di
Cameron Highlands, Pahang telah dianalisis. Kehadiran *V. parahaemolyticus*
keseluruhan (toxR) yang dikesan adalah agak rendah (13.70%), sementara kehadiran
V. parahaemolyticus yang mempunyai gen virulen *tdh* dan *trh* adalah 1.37% dan 0%
masing-masingnya. Konsentrasi maksimum *V. parahaemolyticus* keseluruhan dalam
sampel adalah 1100 MPN/g, sementara *V. parahaemolyticus* *tdh*+ adalah 7.3 MPN/g
dan *V. parahaemolyticus* *trh*+ adalah <3 MPN/g. Sementara itu, pada tahap runcit,
276 sampel sayuran yang biasa dimakan mentah di Malaysia yang diperoleh dari dua
pasaraya dan dua pasar basah yang terletak di Selangor, Malaysia telah dianalisis.
Kehadiran *V. parahaemolyticus* keseluruhan yang dikesan dalam sayuran tersebut
adalah 20.65%, dengan konsentrasi daripada <3 MPN/g hingga >2400 MPN/g.
Patogen *V. parahaemolyticus* *tdh*+ dikesan pada kadar 11.96%, sementara bagi *V.
parahaemolyticus* *trh*+, kehadirannya adalah 10.14%. Kepekatan maksimum *V.
parahaemolyticus* *tdh*+ dan *trh*+ dalam sampel adalah 39 MPN/g dan 15 MPN/g,
masing-masingnya. Jumlah *V. parahaemolyticus* keseluruhan dan berpatogen yang
hadir dalam sampel-sampel dari pra-tuaian dan runcit adalah didapati lebih rendah
(10³) berbanding dos infeksi (10⁶) yang boleh menyebabkan penyakit pada individu
sihat.
Pada tahap dapur domestik, simulasi tentang penyediaan sayuran mentah dalam dapur domestik dengan cara mencuci telah diolah untuk meniru situasi sebenar dalam dapur domestik setepat yang mungkin untuk memberi data kuantitatif yang realistik tentang bagaimana *V. parahaemolyticus* boleh dikurangkan melalui prosedur mencuci. Lima cara mencuci telah diaplikasikan dalam simulasi ini, dan sayuran yang dikontaminasi secara semulajadi dan artifisial telah digunakan. Kehadiran *V. parahaemolyticus* dalam sampel yang dikontaminasi secara semulajadi adalah 75.00% dengan purata konsentrasi 108.95 MPN/g. Kaedah mencuci sayuran dengan membilas sepenuhnya dalam air paip yang dikumpul didati dapat mengurangkan jumlah hingga log pengurangan 0.58 dibandingkan dengan mencuci menggunakan kaedah yang lain, yang adalah lebih rendah namun masih dapat mengurangkan *V. parahaemolyticus* dalam sayuran dengan signifikan.

Sejumlah 46 isolat *V. parahaemolyticus* diperoleh menggunakan kaedah plat dan dikonfirmasi dengan PCR. Tiada isolat yang dikesan mengandungi gen virulent *tdh* dan *trh*. Pemprofilan kerintangan antibiotik menunjukkan bahawa *V. parahaemolyticus* kerintangan-berganda mungkin tersebar dengan meluas di kawasan kajian. Isolat-isolat tersebut menunjukkan kerintangan-berganda terhadap sebanyak 14 antibiotik yang dikaji, dengan kerintangan 93.48% terhadap Nalidixic Acid dan kebanyakan lemah terhadap Imipinem (kerintangan 4.35%). Indeks Kerintangan Antibiotik Berganda (MAR) yang tinggi dikesan dalam kajian ini, dengan lebih 19.57% isolat mempunyai indeks MAR 0.5, yang menunjukkan bahawa isolat-isolat tersebut mungkin berasal dari sumber yang terdedah kepada antibiotic. Pengklusteran isolat *V. parahaemolyticus* berdasarkan profil RAPD-PCR mencadangkan bahawa kebanyakan strain dari lokasi sampel yang sama adalah
berada dalam kumpulan kluster yang sama, walaupun beberapa strain dari lokasi sampel yang berlainan didapati berada dalam kumpulan kluster yang sama.

Satu permulaan penilaian risiko step-wise telah dijalankan untuk menganggar risiko (kebarangkalian infeksi menjadi penyakit) dizedahkan oleh *V. parahaemolyticus* apabila memakan sayuran mentah di Malaysia, dan penganggaran difokuskan kepada bangsa-bangsa yang berlainan di Malaysia kerana perbezaan corak pemakanan sayuran di kalangan bangsa-bangsa tersebut. Suatu model eksponen dos-respon telah digunakan. Dianggarkan bahawa bilangan kes vibriosis tahunan yang diperoleh dari memakan sayuran mentah adalah 20,930 kes per 100,000 populasi di Malaysia. Risiko adalah lebih tinggi kepada bangsa Melayu (31,496 kes per 100,000 populasi), diikuti dengan Cina (9,317 kes per 100,000 populasi), dan India (2,568 kes per 100,000 populasi). Apabila mencuci sayuran dengan membilas sepenuhnya dalam air (log pengurangan paling tinggi), risiko penyakit telah dikurangkan daripada 20,930 kes per 100,000 populasi Malaysia kepada 20,853 kes per 100,000 populasi.

Hasil kajian ini mencadangkan bahawa sayuran mentah berfungsi sebagai saluran transmisi untuk *V. parahaemolyticus* dan dengan itu mendedahkan risiko kepada pengguna. Cadangan untuk kajian pada masa hadapan adalah supaya menjalankan kajian kontaminasi bersilang untuk menentukan sumber atau titik punca kontaminasi di sepanjarg garis pengagihan hasil sayuran. Kajian lanjutan dalam skala yang lebih besar juga adalah digalakkan untuk mendapatkan pemahaman yang lebih mendalam tentang kehadiran *V. parahaemolyticus* dalam sayuran dan risiko yang terlibat apabila memakan sayuran mentah.

x
ACKNOWLEDGEMENTS

I want to praise God Almighty for the wisdom and strength that He has given to me, for the perseverance and will that He has put in my heart, and for the opportunities, guidance, blessings and endless love and support from my supervisors, mentors, family and friends that He has sent to me.

My deepest and heartfelt gratitude goes to my Supervisory Committee’s Chairman, Professor Dr. Son Radu, for not only being a supervisor in my studies, but also as a mentor, role-model, and trustworthy person in life. My deepest appreciation also goes to all my co-supervisors, Dr. Farinazleen Mohd Ghazali, Dr. Noranizan Mohd Adzahan, Dr. Lesley Maurice Bilung, and Associate Professor Dr. Haresh Kumar Kantilal for their tremendous guidance, advice and support throughout my studies.

I would like to specially thank Professor Dr. Mitsuaki Nishibuchi and Dr. Yoshitsugu Nakaguchi from Kyoto University of Japan for their collaboration and support in this research. Thanks also to Frankie and family for their tremendous help during our sampling at Cameron Highlands. A million thanks to all my colleagues for the wonderful friendship, support, help and advice throughout my studies. Dr. Jeyaletchumi, Margaret, Dr. Chai Lay Ching, Dr. Natasha, A. P. Dr. Cheah Yoke Kqueen, Dr. John Tang, Dr. Tuan Zainazor, Kak Noorlis, Ubong, Elexson, Petrus, Pui Chai Fung, Wong Woan Chwen, Professor Dr. Marlina, Yuli Haryani, Noorhidayah, Zarrul, Jeshveen, Sandra, Indah, all labmates and UNISEL’s practical students…Thank you all! Wishing the best in everything you do.

An endless gratitude to all my friends and mentors for the encouragements, prayers and support all these while. Sagau Lee, Sara Kim, Associate Professor Dr. Vani, Robert, Pr. Losius and Sis Christine, Pr. Kenny and Pr. Lisbeth, Wagner and Helena, Anis and John, Anja and Julian, Joshua and Audra, Charlyn and Arnold, Silvie and Hendrias, Ribka and Phillip, Alisah, Clen, Stephanie, Stella, Renny, Jerilyn, Alice, all SIB Serdang members, SIB KL Lake City members, SIB Bukit Kanada Miri members, Pyong Yang Korean Church members, and many more names that I haven’t mention here…you know who you are…Thank you!
Last but most important, I would like to express my gratitude to those most dear to me and have been my inspiration and motivation. To my husband Mervin, thank you for your love and support through ups and downs, there are no words to describe how blessed and thankful I am to have you in my life. I love you! To my son Adriel Paran, you are a gift most previous to us, our bundle of joy...we love you! To my parents Robin Ato and Uran Tusau, you are more than what a child could ever ask for in a parent. Thank you for the love, sacrifice, and support all the years of my life. My beloved siblings Linda, Vivia, Grace, Mary, Jayvier, you all are the best! My parents-in-law Garawat Riboh and Alice, thank you for the love and support, thank you for everything! My sisters and brothers-in-law Pedesen, Melissa, Rachel, Raphael, Leonard, Jona. My grandparents Oko Lun, the late Oko Ato, Oko Angang and Oko Tusau. My beloved relatives: Amit Jalong and family, Jiling and family, Jan and family, Jawa and family, Antok and family, Lasah and family, William Tam and family, David Miller and family, Oda and family, my cousins, my nephews/nieces, and all my big and extended family! I asked if I can further my studies and you all without a doubt said go for it! And since then never stop encouraging me. You all are the reason for me to pursue this dream, thank you so much for all the love and support.

Thank you all and God bless you…!
I certify that a Thesis Examination Committee has met on 9 March 2012 to conduct the final examination of Tunung Robin on her thesis entitled “Biosurveillance of *Vibrio parahaemolyticus* in Raw Salad Vegetables at Pre-Harvest, Retail and Domestic Kitchen Level” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy (Food Safety).

Members of the Examination Committee were as follows:

Jinap Selamat, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Norihan Mohd Saleh, PhD
Associate Professor
Faculty of Biotechnology and Biomolecule Science
Universiti Putra Malaysia
(Internal Examiner)

Mariana Nor Samsudin, PhD
Laboratory of Marine Biotechnology
Universiti Putra Malaysia
(Internal Examiner)

Mansel William Griffiths, PhD
Canadian Research Institute for Food Safety
University of Guelph
(External Examiner)

SEOW HENG FONG, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

xiii
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Farinazleen Mohammad Ghazali, PhD
Senior Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Noranizan Mohammad Adzahan, PhD
Senior Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Lesley Maurice Bilung, PhD
Senior Lecturer
Faculty of Science and Resource Technology
Universiti Malaysia Sarawak
(Member)

Haresh Kumar Kantilal, PhD
Associate Professor
Faculty of Engineering and Science
Universiti Tunku Abdul Rahman
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

TUNUNG ROBIN

Date: 9 March 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION
1.1 Introduction 1
1.2 Objectives 7

2 LITERATURE REVIEW
2.1 *Vibrio parahaemolyticus*
 2.1.1 Background 8
 2.1.2 Taxonomy 10
 2.1.3 Bacteriology 13
 2.1.4 Ecology 15
 2.1.5 Epidemiology 17
 2.1.6 Pathogenicity 19
 2.1.7 Clinical manifestation 20
 2.1.8 Antibiotic resistance 24
2.2 Isolation and identification 27
 2.2.1 Sample Preparation 29
 2.2.2 Enumeration protocols 30
 2.2.2.1 Most-Probable-Number (MPN) 30
 2.2.2.2 Plating methods 31
 2.2.3 Rapid methods 32
 2.2.3.1 Polymerase Chain Reaction (PCR) 32
2.3 Typing of *V. parahaemolyticus* 36
 2.3.1 Phenotyping methods 38
 2.3.2 Molecular typing methods 39
 2.3.2.1 Randomly Amplified Polymorphic DNA (RAPD) 39
2.4 Raw salad vegetables 40
 2.4.1 Microbial contamination in raw vegetables 41
2.5 Food safety 43
 2.5.1 Risk Assessment 46
3 PREVALENCE AND ENUMERATION OF TOTAL AND PATHOGENIC *V. PARAHAEMOLYTICUS* IN VEGETABLES, MANURE, SOIL, SWAB AND WATER SAMPLES AT PRE-HARVEST LEVEL
3.1 Introduction 50
3.2 Materials and methods 53
 3.2.1 Sample collection 54
 3.2.2 Sample preparation 56
 3.2.3 Direct PCR 56
 3.2.4 MPN-PCR 57
 3.2.5 Culturing methods 60
 3.2.6 Statistical analysis 60
3.3 Results 61
3.4 Discussion 78
3.5 Conclusion 81

4 PREVALENCE AND ENUMERATION OF TOTAL AND PATHOGENIC *V. PARAHAEMOLYTICUS* IN VEGETABLES AT RETAIL LEVEL
4.1 Introduction 83
4.2 Materials and methods 86
 4.2.1 Sample collection 86
 4.2.2 Sample preparation 88
 4.2.3 MPN-PCR 88
 4.2.4 Culturing methods 88
 4.2.5 Statistical analysis 89
4.3 Results 89
4.4 Discussion 103
4.5 Conclusion 110

5 SIMULATION OF DECONTAMINATION OF TOTAL AND PATHOGENIC *V. PARAHAEMOLYTICUS* IN RAW VEGETABLES IN DOMESTIC KITCHEN
5.1 Introduction 111
5.2 Materials and methods 113
 5.2.1 Sampling 113
 5.2.2 Kitchen simulation 113
 5.2.3 Preparation of starting inoculum 116
 5.2.4 MPN-PCR 116
 5.2.5 Culturing methods 117
 5.2.6 Data analysis 117
 5.2.7 Statistical analysis 117
5.3 Results 118
5.4 Discussion 134
5.5 Conclusion 139
6 CHARACTERIZATION OF *V. PARAHAELOMYTICUS* ISOLATED FROM VEGETABLES BASED ON ANTIBIOTIC RESISTANCE AND RAPD PROFILING

6.1 Introduction 140
6.2 Materials and methods 142
 6.2.1 *V. parahaemolyticus* isolates 142
 6.2.2 Antibiotic resistance 142
 6.2.2.1 Disc diffusion method 142
 6.2.2.2 Multiple Antibiotic Resistance (MAR) 143
 6.2.3 RAPD 144
 6.2.3.1 RAPD primer screening 144
 6.2.3.2 RAPD-PCR reaction 145
 6.2.3.3 RAPD profile analysis 146

6.3 Results 146
6.4 Discussion 161
6.5 Conclusion 165

7 QUANTITATIVE RISK ASSESSMENT OF *V. PARAHAELOMYTICUS* IN VEGETABLES USING DETERMINISTIC STEP-WISE RISK ASSESSMENT

7.1 Introduction 166
7.2 Materials and methods 169
 7.2.1 Hazard Identification 170
 7.2.2 Hazard characterization 170
 7.2.3 Exposure Assessment 170
 7.2.4 Risk Characterization 171

7.3 Results 171
 7.3.1 Hazard Identification 171
 7.3.2 Hazard Characterization 173
 7.3.3 Exposure Assessment 176
 7.3.4 Risk Characterization 179

7.4 Discussion 193
7.5 Conclusion 197

8 GENERAL DISCUSSION AND CONCLUSION 198

REFERENCES 205
APPENDICES 224
BIODATA OF STUDENT 287
LIST OF PUBLICATIONS 293