UNIVERSITI PUTRA MALAYSIA

AN INTEGRATED MODELLING APPROACH TO POSTHARVEST CONTROL OF Aspergillus flavus GROWTH AND AFLATOXIN PRODUCTION IN PADDY GRAINS AND RICE

WAEL MOUSA

FSTM 2012 15
AN INTEGRATED MODELLING APPROACH TO POSTHARVEST
CONTROL OF Aspergillus flavus GROWTH AND AFLATOXIN
PRODUCTION IN PADDY GRAINS AND RICE

By

WAEL MOUSA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2012
AN INTEGRATED MODELLING APPROACH TO POSTHARVEST CONTROL OF Aspergillus flavus GROWTH AND AFLATOXIN PRODUCTION IN PADDY GRAINS AND RICE

By

WAEL MOUSA

May 2012

Chairman: Farinazleen Mohammed Ghazali, PhD

Faculty: Food Science and Technology

The main aim of the present study was to develop an integrated postharvest strategy for controlling the growth of and aflatoxin production by Aspergillus flavus on paddy and rice. Initially, equilibrium moisture content of paddy was studied at 20, 30, 40 and 50°C at relative humidity (RH) between 0.113 and 0.976 using gravimetric technique. The isotherms displayed the general sigmoidal curve Type II and exhibited hysteresis where it was more pronounced at lower temperatures. At fixed RH, the sorption characteristics were temperature-dependent where the sorption capacity of the paddy increased as the temperature was decreased. Among the models assessed for their ability to fit the sorption data, the Oswin equation was the best followed by the third order polynomial, GAB, Smith, Chung-Pfost, and Henderson models. Therefore, the Oswin model was chosen to estimate the amount of water required to rehydrate dried paddy to the desired water activity (a_w) in subsequent studies. Thereafter, the growth of two aflatoxigenic A. flavus on paddy and aflatoxin production were studied following a full factorial design with seven a_w levels between 0.82 and 0.99 and seven temperatures between 10 and 43°C. The
growth of the fungi, expressed as colony diameter (mm), was measured daily and aflatoxin production was analyzed using isocratic HPLC with a fluorescence detector. The maximum colony growth rates of both isolates were estimated by fitting the primary model of Baranyi to growth data. Three potentially suitable secondary models; Rosso, polynomial, and Davey, were assessed for their ability to describe the radial growth rate as a function of temperature and a_w. Both strains failed to grow at the marginal temperatures (10 and 43°C) regardless of the a_w studied, and at the a_w level of 0.82, regardless of the temperature. Despite that the predictions of all studied models showed good agreement with the observed growth rates, the Davey model proved to be the best predictor of the experimental data. Aflatoxins were detected at a_w between 0.86-0.99 with an optimal a_w of 0.98 and the optimal temperature was in the range of 25-30°C. Then, the effect of a_w (0.82-0.92) and temperature (15-42°C) on the growth and aflatoxin production by A. flavus on polished and brown rice was also studied. Four secondary models were used to implicit the combined effects of a_w and temperature on the growth rates. All models were validated using independent experimental data. According to the assessment indices, the performance of the Davey model in describing the experimental data was the highest, followed in decreasing order by the polynomial, Gaussian and Rosso models. The estimated optimal growth temperature was between 30-34°C. Neither growth nor aflatoxins were detected at a_w 0.82 on polished rice while growth and aflatoxins were detected at this a_w between 25-35°C on brown rice. The highest amounts of aflatoxins were formed at the higher a_w values (0.90-0.92) and a temperature of 20°C after 21 days of incubation for both types of rice where the consistency of aflatoxin production within a wider range of a_w values occurred between 25-30°C. The results also showed that brown rice tended to support higher
A. flavus growth and aflatoxin production than the polished rice. Logistic models describing the growth and aflatoxin production boundaries of A. flavus were also developed. Experiments were conducted at a$_w$ between 0.80 and 0.99 and temperature between 10 °C and 45°C on rice meal agar (RA) for duration of four weeks. The degree of agreement between the predicted and observed data in terms of concordance was > 97% and > 98% for growth and aflatoxin production, respectively. Probabilities of growth and aflatoxin production at 21 days were almost equal to those at 28 days. The polynomial logistic models that were developed were validated with data obtained from repeated experiments on paddy. The models were successfully able to predict the probabilities with concordance rates of 85.2% and 88.9% for growth and aflatoxin production, respectively, whereas all the misidentified cases were found to be false positive. Then, the potential of modified atmosphere packaging with 20-80% CO$_2$ (balanced with nitrogen) in controlling the growth and aflatoxin production on paddy at different a$_w$ (0.92-0.98) relative to the control (0% CO$_2$) was examined using the two above-mentioned fungal isolates. Except at 0.92 a$_w$, as much as 80% CO$_2$ failed to inhibit the growth of the fungi completely. However, at all a$_w$ levels studied, the growth parameters as estimated by Baranyi function and aflatoxin production were affected by the increment in CO$_2$ where growth rate and aflatoxin production were negatively correlated with CO$_2$ while the lag phase correlated positively with CO$_2$. At 0.98 a$_w$, atmosphere enriched with 20% and 80% CO$_2$ led to at least 59% and 88% reduction in growth and 47% and 97% in aflatoxin production, respectively. At 0.95 a$_w$, the lag phases of both isolates on average increased by a factor of 1.7-12.0 when the CO$_2$ levels in the headspace were between 20-80% compared to the control. Finally, the effectiveness of three essential oils (cinnamon, glove and thyme) and three antioxidants [butylated
hydroxyanisole (BHA), propyl paraben (PP) and butylated hydroxytoluene (BHT)] on controlling the growth of and aflatoxin formation by the *A. flavus* grown on rice meal agar and paddy grains at different *a*_w (0.92, 0.95, and 0.98) were evaluated. Two of the antioxidants (BHA and PP) and the three essential oils displayed significant inhibitory effect on the growth and aflatoxin formation on *in vitro* and on the paddy grains. Regardless of *a*_w of the paddy, the application of essential oils at 500 µg g⁻¹ reduced the growth and aflatoxin formation by > 55% and >80%, compared with >75% and > 82% with usage of antioxidants (BHA, PP), respectively. The estimated effective doses 50% (ED₅₀) required to reduce growth and aflatoxin formation on rice meal agar were lower than their counterpart on paddy and those required to inhibit aflatoxin formation were lower those of growth.
PENDEKATAN MODEL BERSEPADU KAWALAN LEPAS TUAI PADI DAN BERAS DARI PERTUMBUHAN *Aspergillus flavus* DAN PENGHASILAN AFLATOKSIN

Oleh

WAEL MOUSA

Mei 2012

Pengerusi: Farinazleen Mohammed Ghazali, PhD

Fakulti: Fakulti Sains Dan Teknologi Makanan

Tujuan utama kajian semasa adalah untuk membina strategi lepas tuai bersepadu untuk mengawal pertumbuhan dan penghasilan aflatoksin oleh *Aspergillus flavus* pada padi dan beras. Permulaannya, kandungan kelembapan keseimbangan padi dikaji pada 20, 30, 40 dan 50 °C pada kelembapan relatif (RH) di antara 0.113 dan 0.976 menggunakan teknik gravimetrik. Isoterma menunjukkan lengkungan sigmoidal Jenis II am dan memperlihatkan histerisis di mana ia adalah lebih ketara pada suhu lebih rendah. Pada RH tetap, ciri penyerapan adalah suhu-kebergantungan di mana kapasiti penyerapan padi meningkat apabila suhu menurun. Antara model-model yang dinilai untuk keupayaan mereka yang sesuai dengan data penyerapan, persamaan Oswin adalah yang terbaik diikuti dengan model-model polinomial tertib ketiga, GAB, Smith, Chung-Pfost dan Henderson. Oleh itu, model Oswin telah dipilih untuk menganggar kandungan air diperlukan untuk menghidrat semula padi kering kepada aktiviti air (\(a_w\)) diingini dalam kajian selanjutnya. Berikutnya, pertumbuhan dua aflatoksigenik *A. flavus* pada padi dan penghasilan aflatoksin dikaji mengikut reka bentuk faktorial penuh dengan tujuh tahap \(a_w\) di antara 0.82 dan
0.99 and tujuh suhu di antara 10 dan 43 °C. Pertumbuhan kulat, dinyatakan sebagai diameter koloni (mm), diukur setiap hari dan penghasilan aflatoxin telah dianalisis menggunakan HPLC isokratik dengan pengesan pendafluoran. Kadar pertumbuhan koloni yang maksimum daripada kedua-dua isolat telah dianggarkan dengan menyesuaikan model utama Baranyi kepada data pertumbuhan. Tiga model sekunder berpotensi yang sesuai; Rosso, polinomial dan Davey, telah dinilai keupayaan mereka untuk menerangkan kadar pertumbuhan radial sebagai fungsi suhu dan a_w. Kedua-dua strain gagal untuk tumbuh pada suhu marginal (10 dan 43 °C) tanpa mengira a_w yang dikaji, dan pada tahap a_w 0.82, tanpa mengira suhu. Meskipun ramalan kesemua model yang dikaji menunjukkan persetujuan yang baik dengan kadar pertumbuhan yang diperhatikan, model Davey terbukti sebagai peramal terbaik untuk data eksperimentasi. Aflatoxin telah dikesan pada a_w di antara 0.86-0.99 dengan a_w optimal pada 0.98 dan suhu optimal dalam lingkungan 25-30 °C. Kemudian, kesan a_w (0.82-0.92) dan suhu (15-42 °C) pertumbuhan dan penghasilan aflatoxin oleh A. flavus pada beras putih dan beras perang juga dikaji. Empat model sekunder telah digunakan secara mutlak untuk kesan gabungan a_w dan suhu terhadap kadar pertumbuhan. Kesemua model telah disahkan menggunakan data eksperimentasi bebas. Berpandukan kepada indeks penilaian, perlaksanaan mmodel Davey dalam menghuraikan data eksperimentasi adalah yang tertinggi, diikuti dalam susunan menurun oleh model-model polinomial, Gaussian dan Rosso. Anggaran suhu pertumbuhan optima adalah di antara 30-34 °C. Tiada pertumbuhan mahupun aflatoxin telah dikesan pada a_w 0.82 pada beras putih manakala pertumbuhan dan aflatoxin telah dikesan pada a_w di antara 25-35 °C pada beras perang. Jumlah aflatoxin yang tertinggi telah dibentuk pada nilai a_w (0.90-0.92) yang lebih tinggi dan suhu 20 °C selepas 21 hari inkubasi untuk kedua-dua jenis beras di mana
penghasilan aflatoxins secara konsisten di dalam jutai nilai a_w yang lebih luas berlaku di antara 25-30 °C. Keputusan juga menunjukkan bahawa beras perang cenderung untuk menyokong pertumbuhan A. flavus dan penghasilan aflatoxins yang lebih tinggi berbanding beras putih. Model logistik yang menghuraikan sempadan pertumbuhan dan penghasilan aflatoxins A. flavus juga telah dibangunkan. Eksperimen telah dijalankan pada a_w di antara 0.80 dan 0.99 dan suhu di antara 10 °C dan 45 °C pada agar tepung beras (RA) untuk jangka masa empat minggu. Darjah persetujuan di antara data ramalan dan pemerhatian dalam terma kesejajaran adalah > 97% dan > 98% untuk untuk pertumbuhan dan penghasilan aflatoxins, masing-masing. Kebarangkalian pertumbuhan dan penghasilan aflatoxins pada 21 hari adalah hampir sama dengan kebarangkalian pada 28 hari. Model-model logistik polinomial yang telah dibangunkan telah disahkan dengan data yang diperolehi daripada eksperimen ulangan terhadap padi. Model-model tersebut dengan berjayanya mampu meramal kebarangkalian dengan kadar kesejajaran 85.2% dan 88.9% untuk pertumbuhan dan penghasilan aflatoxins, masing-masing. Manakala kesemua kes salah pengesanan telah didapati sebagai positif palsu. Kemudian, potensi pembungkusan atmosfera terubah suai dengan 20-80% CO$_2$ (diseimbangkan dengan nitrogen) dalam mengawal pertumbuhan dan penghasilan aflatoxins terhadap padi pada a_w (0.92-0.98) yang berbeza relatif kepada kawalan (0% CO$_2$) telah diselidik menggunakan dua isolat kulat yang dinyatakan di atas. Kecuali pada a_w 0.92, CO$_2$ sebanyak 80% gagal untuk merencat pertumbuhan kulat sepenuhnya. Bagaimanapun, pada kesemua tahap a_w yang dikaji, parameter-parameter pertumbuhan seperti yang dianggar dengan fungsi Baranyi dan penghasilan aflatoxins telah dipengaruhi dengan peningkatan dalam CO$_2$ di mana kadar pertumbuhan dan penghasilan aflatoxins adalah berhubung kait secara negatif
with CO₂ manakala fasa lag berhubung kait secara positif dengan CO₂. Pada aₜₗ₀.98, atmosfera yang diperkaya dengan 20% dan 80% CO₂ membawa kepada sekurang-kurangnya 59% dan 88% pengurangan dalam pertumbuhan dan 47% dan 97% dalam penghasilan aflatoxsin, masing-masing. Pada aₜₗ₀.95, fasa-fasa lag kedua-dua isolat secara purata meningkat dengan faktor 1.7-12.0 apabila tahap CO₂ di dalam ruang kepala adalah di antara 20-80% berbanding kawalan. Akhirnya, keberkesanan tiga minyak esen (kayu manis, bunga cengkih dan thyme) dan tiga antioksidan [butylated hidroksianisol (BHA), propyl paraben (PP) dan butylated hidroksitoluena (BHT)] dalam mengawal pertumbuhan dan pembentukan aflatoxsin oleh A. flavus yang dibakukan pada agar tepung beras dan bijirin padi pada aₜₗ₀ (0.92, 0.95 dan 0.98) yang berbeza telah dinilai. Dua daripada antioksidan (BHA dan PP) dan ketiga-tiga minyak esen mempamerkan kesan perencatan yang signifikan terhadap pertumbuhan dan pembentukan aflatoxsin pada in vitro dan pada bijirin padi. Tanpa mengira aₜₗ pada padi, penggunaan minyak-minyak esen pada 500 μg g⁻¹ mengurangkan pertumbuhan dan pembentukan aflatoxsin dengan > 55% dan > 80%, berbanding dengan > 75% dan > 82% dengan pengguna antioksidan (BHA, PP), masing-masing. Anggaran 50% dos-dos berkesan (ED₅₀) yang diperlukan untuk mengurangkan pertumbuhan dan pembentukan aflatoxsin pada agar tepung beras adalah lebih rendah berbanding yang digunakan pada padi dan yang diperlukan untuk merencatkan pertumbuhan aflatoxsin adalah lebih rendah berbanding yang diperlukan untuk pertumbuhan.
ACKNOWLEDGEMENTS

“In the Name of Allah, the Most Merciful and the Most Beneficent”

All praise do to allah, Lord of the universe. Only by his grace and mercy this thesis was completed. First and for most I would like to express my profound gratitude to my honourable supervisor Dr. Farinazleen Mohamad Ghazali for her invaluable advice, guidance, encouragement. I would like to wish her unending success in her family and professional lives. I am extremely grateful to my supervisory committee members, Prof. Dr. Jinap Selamat, Pof. Dr. Hasanah Mohd. Ghazali and Prof. Dr. Son Radu for their valuable contribution and suggestions.

I am grateful to my colleagues in the laboratory of food safety and quality; Kabir Umar, Elham Farahany, Sahar Arzandeh, Gisja Daniali, Wendy Lim, Diyana Syamim, Afsaneh Farhadian, Dr. Parvaneh Hajeb for being supportive friends and wish them all the very best for the future. I am indebted to the staff of the Faculty of Food Science and Technology, University Putra Malaysia who assisted me in one way or the other. Special thanks to Norliza Othman for her assistance through my study.

I would like to express my sincere gratitude to my parents, brothers and sisters for their prayers, unending encouragement and continuous moral support. Last but not least, my beloved wife, Myssa Mousa and my dear kids (Abdulrahman and Abdullah) deserve my deepest and heartfelt gratitude for their bearing with me for the many months I spent away from home.
I certify that a Thesis Examination Committee has met on 15 May 2012 to conduct the final examination of Wael A. S. Mousa on his thesis entitled “An Integrated Modelling Approach to Postharvest Control of *Aspergillus flavus* Growth and Aflatoxin Production in Paddy Grains and Rice” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd Yazid bin Abd Manap, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Fatimah binti Abu Bakar, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Cheah Yoke Kqueen, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

R. Russell M. Paterson, PhD
Professor
Centre of Biological Engineering
University of Minho
Portugal
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 28 June 2012
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Farinazleen Mohamad Ghazali, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Jinap Selamat, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Hasanah Mohd. Ghazali, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 28 June 2012
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

WAEL MOUSA
Date: 15 May 2012
TABLE OF CONTENTS

ABSTRACT	i
ABSTRAK	v
ACKNOWLEDGEMENTS	ix
APPROVAL	x
DECLARATION	xii
LIST OF TABLES	xviii
LIST OF FIGURES	xxi
LIST OF ABBREVIATIONS	xxv

CHAPTER

1

INTRODUCTION

1.1 Specific objectives

2

LITERATURE REVIEW

2.1 Introduction

2.2 Water availability

2.3 Moisture sorption isotherm

2.4 Factor affecting fungal growth in the grains ecosystem

2.4.1 Effect of water activity on fungal growth

2.4.2 Effect of temperature on fungal growth

2.4.3 Fungal interaction in grain ecosystem

2.4.4 Effect of inter-gaseous composition on fungal growth

2.4.5 Relationship between insects manifestation and fungi in grain ecosystem

2.5 Possible effect of climate change on change on the growth of mycotoxigenic fungi

2.6 Mycotoxins

2.6.1 Aflatoxins

2.6.2 Aflatoxin analysis

2.7 Control of fungal growth and aflatoxins

2.7.1 Control of aflatoxigenic fungi using modified atmosphere storage

2.7.2 Control of aflatoxigenic fungi using antioxidants

2.7.3 Control of aflatoxigenic fungi using essential oils

2.7.4 Biological control of aflatoxigenic fungi

2.8 Effect of milling on aflatoxins level in rice

2.9 Predictive mycology

2.9.1 Primary models

2.9.2 Secondary models

2.9.3 Tertiary models

2.9.4 Probability models

xiii
3 SORPTION ISOTHERMS AND ISOSTERIC HEATS OF SORPTION OF MALAYSIAN PADDY

3.1 Introduction 48
3.2 Materials and methods 50
 3.2.1 Materials 50
 3.2.2 Experimental procedure 50
 3.2.3 Fitting sorption data to various isotherm equations 51
 3.2.4 Determination of the net isosteric heat of sorption 52
3.3 Results 53
 3.3.1 Moisture sorption isotherm and sorption hysteresis 53
 3.3.2 Modelling the sorption isotherm 56
 3.3.3 Isosteric heat of sorption 62
3.4 Discussion 63
 3.4.1 Moisture sorption isotherm and sorption hysteresis 63
 3.4.2 Modelling sorption isotherm 65
 3.4.3 Isosteric heats of sorption 67
3.5 Conclusion 68

4 MODELLING THE EFFECT OF WATER ACTIVITY AND TEMPERATURE ON THE GROWTH RATE OF AND AFLATOXIN PRODUCTION BY Aspergillus flavus IN PADDY

4.1 Introduction 69
4.2 Materials and methods 72
 4.2.1 Fungal isolates 72
 4.2.2 Experimental design 72
 4.2.3 Preparation and inoculation of paddy grains 73
 4.2.4 Assessment of fungal growth 74
 4.2.5 Modelling fungal growth as a function of a_w and temperature 74
 4.2.6 Modelling aflatoxin production as a function of a_w and temperature 76
 4.2.7 Model validation 77
 4.2.8 Determination of aflatoxin 77
4.3 Results 79
 4.3.1 Effect of a_w and temperature on the growth rate of A. flavus on paddy 79
 4.3.2 Model validation 87
 4.3.3 Effect of a_w and temperature on Aflatoxin production by A. flavus on paddy 91
4.4 Discussion 94
4.5 Conclusion 98
5 Effect of Water Activity and Temperature on the Growth and AFLATOXIN PRODUCTION BY Aspergillus flavus ON Polished and Brown Rice: Development and Assessment of Different Growth Models

5.1 Introduction 100
5.2 Materials and methods 101
 5.2.1 Fungal isolates 101
 5.2.2 Experimental design 101
 5.2.3 Preparation of rice 102
 5.2.4 Inoculation, incubation and growth assessment 102
 5.2.5 Model development 103
5.3 Results 107
 5.3.1 Modelling the growth rate as a function of temperature and a_w 107
 5.3.2 Validation and evaluation of performance of the models 113
 5.3.3 Effect of temperature, a_w, and incubation time on the formation of aflatoxins 116
5.4 Discussion 116
5.5 Conclusion 119

6 MODELLING GROWTH/NO GROWTH AND AFLATOXIN PRODUCTION BOUNDARY OF Aspergillus flavus ON RICE

6.1 Introduction 125
6.2 Materials and methods 126
 6.2.1 Experimental design 126
 6.2.2 Fungal isolates 127
 6.2.3 Preparation of the medium 127
 6.2.4 Inoculum preparation, inoculation, incubation, and growth monitoring 127
 6.2.5 Determination of aflatoxins 128
 6.2.6 Modelling growth no /growth and aflatoxins production boundaries 129
 6.2.7 Model validation 130
6.3 Results 131
 6.3.1 Modelling growth/no growth interface 131
 6.3.2 Modelling aflatoxins production/no production interface 138
 6.3.3 Model validation 144
6.4 Discussion 145
6.5 Conclusion 151
TEMPERATURE, WATER ACTIVITY AND GAS COMPOSITION EFFECTS ON THE GROWTH AND AFLATOXIN PRODUCTION BY Aspergillus flavus ON PADDY

7.1 Introduction 152
7.2 Materials and methods 153
 7.2.1 Experimental design 153
 7.2.2 Fungal isolates 153
 7.2.3 Influence of temperature and water activity on the relation between colony diameters and aflatoxins production on paddy 154
 7.2.4 Influence of modified atmosphere packaging (MAP) on the growth and aflatoxin production on paddy with different water activity 154
 7.2.5 Determination of aflatoxins 155
 7.2.6 Mathematical and statistical analysis 155
7.3 Results 157
 7.3.1 Effect of temperature and aw on the relation between colony diameter and aflatoxins production by A. flavus on paddy 157
 7.3.2 Effects of aw and initial headspace CO2 on the growth parameters of A. flavus on paddy 160
 7.3.3 Effects of aw and initial headspace CO2 on aflatoxins production in paddy 164
7.4 Discussion 165
7.5 Conclusion 170

EFFICACY OF ESSENTIAL OILS AND ANTIOXIDANTS IN CONTROLLING OF GROWTH AND AFLATOXIN PRODUCTION BY Aspergillus flavus ON PADDY

8.1 Introduction 171
8.2 Materials and methods 172
 8.1.2 Screening study for the effect of essential oil growth of A. flavus 172
 8.2.2 In vitro effect of essential oils and antioxidant on the growth and aflatoxin production by A. flavus 173
 8.2.3 Effect of essential oils and antioxidant on the growth and aflatoxin production by A. flavus on paddy 174
 8.2.4 Aflatoxin analysis 175
 8.2.5 Mathematical and statistical analysis 175
8.3 Results 176
 8.3.1 Screening study for the effect of essential oil growth of A. flavus 176
 8.3.2 In vitro effect of essential oil and antioxidants on the growth of and aflatoxin production by A. flavus 176

xvi
8.3.3 Effect of essential oil on the growth of and aflatoxin production by \textit{A. flavus} on paddy grains

8.4 Discussion

8.5 Conclusion

9 SUMMARY, CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

9.1 Summary and conclusion

9.2 Recommendation for future research

REFERENCES

BIODATA OF STUDENT

LIST OF PUBLICATIONS