KNOWLEDGE MANAGEMENT SYSTEM FRAMEWORK FOR COLLABORATIVE SOFTWARE MAINTENANCE ENVIRONMENT

MOHD ZALI BIN MOHD NOR

FSKTM 2012 18
KNOWLEDGE MANAGEMENT SYSTEM FRAMEWORK FOR COLLABORATIVE SOFTWARE MAINTENANCE ENVIRONMENT

BY

MOHD ZALI BIN MOHD NOR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

APRIL, 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Doctor of Philosophy

KNOWLEDGE MANAGEMENT SYSTEM FRAMEWORK FOR COLLABORATIVE SOFTWARE MAINTENANCE ENVIRONMENT

By

MOHD ZALI BIN MOHD NOR

APRIL 2012

Chairman: Assoc. Prof. Rusli bin Abdullah, PhD

Faculty: Computer Science and Information Technology

Software Maintenance (SM) environment is highly collaborative, complex, knowledge-driven and important. Organizations depend on how quickly, reliably and cost-effective the software could be changed to meet business demands. In a collaborative environment within SM Community of Practice (CoP), users and software maintainers interact on regular basis to share knowledge to resolve software bugs and to extend new enhancements. However, issue such as problem in identifying and sharing knowledge is still regarded as a major challenge.

In this study, a Knowledge Management System (KMS) framework for collaborative Software Maintenance (SM) is formulated based on existing components in general frameworks in Knowledge Management (KM), KMS and SM areas. A survey was carried-out to determine important KMS components to the SM CoP and the components are further examined by experts. As a result, a KMS framework consisting
of SM Community of Practice, Knowledge Required, SM Process/Activities, Knowledge Management Activities, SM Tools, Automation/Knowledge Discovery Tools, KMS Infrastructure, Collaborative and Soft Influences components was proposed.

The KMS framework was then validated vis-a-vis a prototype to verify selected components are indeed useful for SM CoP. The prototype, called Software Maintenance Collaborative Agent Team (SCAT), uses the Multi-Agent System (MAS) technology to automate knowledge storing and sharing during SM processes. A combined ontology has also been developed to link and extend the business domain to SM processes knowledge.

To evaluate the KMS framework components, SCAT is implemented, in an in-house SM department and evaluated against another KMS framework represented by an agent-based KMS tool developed by Rodriguez et al. A survey (based on Wu and Wang KMS Success Model) was conducted to gauge the benefits of both KMS tools, which covers knowledge or information quality and perceived KMS benefits. Based on t-test comparison on overall Rasch estimated measures, it was concluded that SCAT KMS is significantly better than Rodriguez KMS in the above areas. In addition, based on Common Person Equating plot and Measure Differences plots, SCAT is significantly better in important aspects such as complete knowledge portal, sharing specific knowledge and improves quality. In future, SCAT could be enhanced to improve the weak areas.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

RANGKA KERJA SISTEM PENGURUSAN PENGETAHUAN UNTUK PENYELENGGARAAN PERISIAN DI DALAM PERSEKITARAN BERKOLABORATIF

Oleh

MOHD ZALI BIN MOHD NOR

APRIL 2012

Pengerusi: Prof. Madya Rusli bin Abdullah, PhD

Fakulti: Sains Komputer dan Teknologi Maklumat

Persekitaran untuk Pengurusan Perisian (PP) adalah sangat berkolaboratif, kompleks, penting dan memerlukan ilmu pengetahuan di dalam bidang yang berkaitan. Organisasi bergantung kepada berapa cepat, berkualiti dan kos efektif sesebuah aplikasi dapat diperbaiki untuk memenuhi keperluan perniagaan atau operasi. Sehingga kini, masalah mengenali dan mendapatkan sumber pengetahuan adalah isu yang besar di dalam PP. Bagi memanafaatkan Pengurusan Pengetahuan (KM) di dalam satu system aplikasi, sebuah sistem maklumat KM (KMS) diperlukan,

Di dalam kajian ini, satu rangka kerja KMS untuk persekitaran berkolaboratif bagi PP dirumus. Pada peringkat awal, rangka kerja umum dari bidang berkaitan dengan KM, KMS dan PP disintesis dan dirumus. Komponen asas seperti keperluan pengetahuan,
konteks organisasi, process dan aktiviti KM, teknologi dan peralatan kemudiannya dirumus sebagai rangka kerja awal KMS. Seterusnya, kajian soal-selidik dijalankan untuk menentukan komponen yang penting bagi PP.

Rangka kerja KMS yang telah disahkan di atas kemudiannya diolah menjadi satu sistem prototaip bagi menentusahkan bahawa komponen-komponen tersebut berguna untuk CoP di dalam PP. Prototaip ini, yang dipanggil Software maintenance Collaborative Agent Team (SCAT) menggunakan-pakai Sistem Multi-Ejen (Multi-Agent System - MAS) untuk sistem automasi SCAT. Bagi memudahkan proses penstrukturan data dan informasi, ontologi pengetahuan bidang diadun dengan pengetahuan proses PP.

Untuk menilai keberkesanan Rangka Kerja KMS, SCAT dinilai dengan membanding dengan sebuah sistem multi-ejen lain yang dibangunkan oleh Rodriguez menggunakan model soal-selidik keberkesanan KMS oleh Wu & Wang yang meliputi aspek kualiti informasi dan pengetahuan dan faedah KMS. Ujian-t (t-test) digunapakai bagi perbandingan antara sistem KMS SCAT dan Rodriguez. Kesimpulannya, secara keseluruhan, SCAT didapati lebih baik daripada Rodriguez KMS. Tambah lagi, hasil dari plot persamaan individu umum (Common Person Equating plot) menunjukkan SCAT lebih signifikan di dalam komponen penting KMS iaitu portal pengetahuan yang baik, perkongsian pengetahuan spesifik dan penambahbaik kualiti. Pada masa hadapan, SCAT masih boleh dipertingkatkan bagi memperbaiki komponen-komponen yang lemah.
ACKNOWLEDGEMENTS

Whispering Basmallah – In the name of Allah, the most merciful and the most compassionate, I begin with a hearty thankfulness for granting me the strength, inspiration and tenacity to complete this major milestone of life in the quest for knowledge. Also salawah and salam to our prophet Muhammad (P.B.U.H.) for his guidance in living this live and the next hereafter. The underpinning of this research is rooted in below du’a, where ‘beneficial knowledge’ are very much essential to produce positive actions.

Meaning: “O Allah I ask you for beneficial knowledge, a good provision and deeds/actions that are accepted” (narrated from Abu Hurairah by At-Tirmidzi and Ibnu Majah)

Next, I owe with deepest gratitude to Assoc. Prof. Dr. Rusli Abdullah. As chairman of the supervisory committee, his guidance, insights, expertise and encouragement are keys to the completion of this work. I am also very grateful to co-supervisors, Assoc. Prof. Mohd Hasan Selamat, Assoc. Prof. Masrah Azrifah Azmi Murad and Dr. Mashitah Ghaizali for their expertise and valuable advices. During data analysis, I am very indebted to Prof. Trevor G. Bond of James Cook University, who has spend countless hours (after numerous cycling rides) to assist me with the data analysis using Rasch methodology. I am also thankful to Tuan Saidfuddin and Dr. Azrilah who first introduced me to Rasch. In verifying the KMS framework, I am indebted to Software Maintenance experts in PLUS Berhad and Telekom Malaysia. My colleagues in
Newstar Agencies also played an important role as my ‘guinea pig’, testing the prototype, in which, I owe them a good lunch. I also have a very good boss, Itzik Moisis who understood that I need countless days of leaves to see my supervisors or attend conferences.

However, the special thank you and love are conveyed to my loving wife, Aminah Ali, and my three kids (Ammar, Amir and Anis), for their time, understanding, caring and patience are priceless. The gratitude is also extended to my parents, siblings, fellow struggling PhD students and friends who provide the insights, jokes, laughter and camaraderie. This is a journey full of commitment and tenacity, which I will cherish forever. Thanks you to all and may God bless all of you!!!
APPROVAL

Replace with approval sheet
This thesis was submitted to the Senate if Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Rusli Abdullah, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Hj. Mohd. Hasan Selamat, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Masrah Azrifah Azmi Murad, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHD ZALI BIN MOHD NOR

Date: 26 April, 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background

1.2 Problem Statement

1.3 Research Questions

1.4 Research Objectives

1.5 Motivation

1.6 Scope of the Research

1.7 Organization of the Thesis

1.8 Summary

2 LITERATURE REVIEW

2.1 Introduction

2.2 Software Maintenance (SM)

2.3 Knowledge, KM, KMS

2.2.1 Definitions

2.2.2 Importance of SM

2.2.3 SM Process

2.2.4 Areas of Concerns

2.3.1 Definitions

2.3.2 KM Processes

2.3.3 KM Frameworks

2.3.4 KMS Frameworks
2.4 KMS in Collaborative SM Environment
- 2.4.1 The Intersection of KM, KMS and SM 22
- 2.4.2 Importance of KM in SM 23
- 2.4.3 KMS Frameworks in SM 24

2.5 Collaborative Systems
- 2.5.1 Computer Supported Cooperative Work 26
- 2.5.2 Community of Practice (CoP) 27

2.6 Multi-Agent System (MAS)
- 2.6.1 Definition 28
- 2.6.2 Other MAS in SM 28

2.7 Ontology
- 2.7.1 Definition 31
- 2.7.2 SM Ontologies 31

2.8 Issues and challenges 34

2.9 Summary 35

3 RESEARCH METHODOLOGY

3.1 Introduction 37

3.2 Phase I – Synthesize Existing Frameworks 39
- 3.2.1 Summary of Existing Frameworks 39
- 3.2.2 Synthesize Framework Components 40
- 3.2.3 Summarize and Revise Components 40
- 3.2.4 Survey Design 41
- 3.2.5 Pilot Study 41

3.3 Phase II – KMS Framework Verification 42
- 3.3.1 Questionnaire Survey Distribution 43
- 3.3.2 Survey Evaluation Method 44
- 3.3.3 Rasch Analysis 45
- 3.3.4 Expert Judgment 47

3.4 Phase III – Design and Develop a Prototype 47
- 3.4.1 Design Agent Types 49
- 3.4.2 Develop Ontology 53
- 3.4.3 Design Prototype KMS System 55
- 3.4.4 Develop SCAT and Rodriguez KMS 56
- 3.4.5 Test and Implement the Prototype 56

3.5 Phase IV – Prototype Evaluation and Benchmark Analysis 57
- 3.5.1 Prototype Evaluation 57
- 3.5.2 Evaluation Methods 59
- 3.5.3 Threat to Validity 62

3.6 Summary 63
4 KMS FRAMEWORK FOR COLLABORATIVE SM

4.1 Introduction 64
4.2 Synthesis of KM, KMS, SE and SM Frameworks 65
4.3 Revised KMS Components 73
4.4 Initial KMS Framework Verification 74
4.4.1 Pilot Study 75
4.5 Results of Survey 81
4.5.1 Data Reliability 82
4.5.2 Fitness of Respondent Data and Questionnaire Items Data 83
4.5.3 Component Group Cut-off Points 86
4.6 Summary 89

5 SYSTEM DESIGN - KMS TOOL

5.1 Introduction 91
5.2 Design Framework 92
5.3 SM Processes and Activities 96
5.4 Multi-Agent System (MAS) Design 100
5.4.1 MAS Systems Specification 101
5.4.2 MAS Architectural Design 103
5.4.3 MAS Detailed Design 106
5.5 Combined Enterprise Domain and SM Ontology 107
5.5.1 Define the Scope and Purpose of Ontology 108
5.5.2 Reuse Existing Ontologies 108
5.5.3 Enumerate Terms 108
5.5.4 Define the Classes and the Class Hierarchy 110
5.5.5 Verifying the Combined Ontology 114
5.6 Software Requirements Specifications (SRS) for SCAT 116
5.7 Specifications for Rodriguez KMS 118
5.8 Implementation and Evaluation 122
5.9 Summary 122

6 RESULTS AND DISCUSSION

6.1 Introduction 124
6.2 KMS Tools Evaluation 124
6.2.1 Quantitative Data Analysis 124
6.2.2 KMS Success Evaluation 125
6.3 Summary 136
CONCLUSION AND FUTURE WORKS

7.1 Introduction 137
7.2 Research Conclusion 137
7.3 Research Contributions 140
7.3.1 Theoretical Contribution 140
7.3.3 Practical Contribution 140
7.4 Research Limitations 140
7.5 Future Works 141
7.6 Summary 142

REFERENCES 144
APPENDICES 152
BIODATA OF THE STUDENT 251
LIST OF PUBLICATIONS 252