UNIVERSITI PUTRA MALAYSIA

GENETIC DIVERSITY AND STABILITY ANALYSIS
OF SWEETPOTATO (IPOMOEA BATATAS Lam. L.)
GERMPLASM FOR LEAFY VEGETABLE QUALITY

THIYAGU DEVARAJAN

FP 2012 37
GENETIC DIVERSITY AND STABILITY ANALYSIS OF SWEETPOTATO (*IPOMOEA BATATAS* Lam. L.) GERMPLASM FOR LEAFY VEGETABLE QUALITY

THIYAGU DEVARAJAN

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2012
GENETIC DIVERSITY AND STABILITY ANALYSIS OF SWEETPOTATO
(IPOMOEA BATATAS Lam. L.) GERMPLASM FOR LEAFY VEGETABLE
QUALITY

By

THIYAGU DEVARAJAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Science

April 2012
In Malaysia, sweetpotato has a good potential to be an important crop but currently it is not fully utilized. The leafy tops are sold in the market as vegetable, but the varieties sold are varied especially in eating quality. The objectives of this study were to evaluate the genetic diversity of leaf characters and yield components of selected twenty-two out of hundred fifty sweetpotato genotypes available in Malaysian Agriculture Research Development Institute (MARDI)’s sweetpotato germplasm collected from throughout Malaysia and other countries, subsequently to identify potential genotypes grown across different types of agro-ecology for vegetable use. In the first experiment, twenty sweetpotato genotypes were selected from MARDI’s germplasm collection and another 2 genotypes obtained from wet market, Serdang, Selangor, and were evaluated in MARDI Research Station, Serdang. The genotypes were planted with three replications on three-bed plots using randomized complete block design. The planting distance was 50
cm between bed and 25 cm within planting rows, and 20 of 30 cm shoot cuttings were used as planting materials. Results showed, morphological, yield and yield component traits were highly variable. Heritability estimates accounted for more than 80% in all traits except latex, hairiness, mature leaf size (cm) and leaf number per 10 cm shoot. In most traits a large portion of the phenotypic variance was accounted for by the genetic component. MIB12 recorded high total shoot yield (kg bed\(^{-1}\)) followed by MIB05. Meanwhile, MIB17 had the largest leaf area (cm\(^2\)), while MIB09 with the smallest. For the overall consumer acceptability score in organoleptic test, MIB05 was chosen as highly preferred genotype followed by MIB14, MIB13 and MIB15.

In the second experiment, six selected genotypes from the first experiment namely, MIB05, MIB12, MIB13, MIB14, MIB15 and MIB20 were evaluated in four locations over two planting seasons. The six genotypes were selected based on shoot yield, low latex exudation, root yield and organoleptic characters. The trials were conducted at four locations, namely Serdang, Selangor (mineral soils), Telong, Kelantan (bris soils), Kundang, Selangor (tin-tailing soils) and Pontian, Johor (peat soils) with four replications using randomized complete block design in each agro-ecology. MIB05 had high total shoot yield in all agro-ecologies except in Pontian. Although MIB05 produced high shoot yield it had low or no root yields. The genotype stability analysis indicates that MIB15 was either stable or highly stable in all agro-ecologies in most characters using genotype-grouping techniques, non-parametric (S\(^3\)) and superiority measure (P\(_i\)) statistics. In this study, leaf area (cm\(^2\)), petiole length (cm) and 30-shoots weight (kg) exhibited genotypic
coefficient variation (GCV) and phenotypic coefficient variation (PCV) more than 20% and heritability more than 40% at all agro-ecologies suggesting that these characters would be very useful as a base for selection in sweetpotato breeding programs. Finally this study suggests that MIB15 is highly recommended for leafy vegetable and root production across agro-ecologies. Meanwhile MIB05 is recommended for shoot yield production especially for planting on bris soils.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KEPELBAGAIAN GENETIK DAN ANALISIS KESTABILAN JANAPLASMA KELEDEK (IPOMOEA BATATAS Lam. L.) UNTUK KUALITI SAYURAN DAUN

Oleh

THIYAGU DEVARAJAN

April 2012

Pengerusi: Mohd Rafii Yusop, PhD

Fakulti: Pertanian

Di Malaysia, keledek berpotensi menjadi tanaman penting tetapi pada masakini belum dimanfaatkan sepuhnya. Pucuk keledek ada dijual di pasar tempatan tetapi dari varieti yang berbeza-beza terutamanya dari segi kualiti pemakanan. Objektif kajian ini adalah menilai kepelbagaian genetik ciri pucuk dan komponen hasil genotip keledek yang terdapat di janaplasma keledek MARDI dan seterusnya, untuk mengenalpasti genotip berpotensi untuk kegunaan pucuk sebagai sayuran yang sesuai ditanam di pelbagai persekitaran ekologi. Di dalam percubaan pertama, dua puluh daripada seratus lima puluh genotip keledek telah dipilih dari koleksi janaplasma MARDI (dalam dan luar negara) dan dua genotip didapati daripada pasar basah Serdang, Selangor, dan telah dibuat penilaian di Stesen MARDI Serdang. Genotip tersebut ditanam dengan tiga replikasi di atas tiga batas per plot dengan menggunakan rekabentuk blok penuh rawak. Jarak tanaman adalah 50 cm di antara batas dan 25 cm di dalam baris, dan menggunakan 20 keratan pucuk sepanjang 30 cm sebagai bahan tanaman.
Keputusan menunjukkan, ciri morfologi, hasil dan komponen hasil adalah sangat bervariasi. Anggaran keterwarisan adalah melebihi 80% bagi semua ciri kecuali latek, kedapatan rerambut, saiz daun matang (cm) dan bilangan daun dalam setiap 10 cm pucuk. Dalam kebanyakan ciri, kadar yang tinggi dari variasi fenotip adalah dari sumberan komponen genetik. MIB12 menunjukkan jumlah hasil pucuk yang tinggi dan diikuti oleh MIB05. Sementara itu, MIB17 mempunyai luas daun yang terbesar, manakala MIB09 adalah yang terkecil. Skor penerimaan pengguna keseluruhan di dalam ujian organoleptik, MIB05 telah dipilih sebagai genotip yang paling digemari dan diikuti oleh MIB14, MIB13 dan MIB15.

Di dalam eksperimen kedua, enam genotip terpilih dari percubaan pertama, iaitu MIB05, MIB12, MIB13, MIB14, MIB15 dan MIB20 telah dinilai di empat lokasi dengan dua musim penanaman. Enam genotip tersebut telah dipilih berdasarkan ciri hasil pucuk, rembesan latek yang rendah, hasil ubi dan organoleptik. Percubaan ini, telah dijalankan di empat lokasi, iaitu Serdang, Selangor (tanah mineral), Telong, Kelantan (tanah bris), Kundang, Selangor (tanah bekas lombong) dan Pontian Johor (tanah gambut), dengan empat replikasi menggunakan rekabentuk penuh blok terawak bagi setiap agro-ekologi. MIB05 memberikan jumlah hasil pucuk yang tinggi di semua agro-ekologi kecuali di Pontian. Walaupun, MIB05 memberikan hasil pucuk yang tinggi tetapi mempunyai hasil ubi yang rendah atau tiada. Analisa kestabilan genotip menunjukkan MIB15 adalah samada sangat stabil atau stabil di semua agro-ekologi bagi kebanyakan ciri dengan menggunakan teknik pengumpulan-genotip, non-parametrik \((S^3_i) \) dan statistik ukuran keunggulan \((P_i) \). Dalam kajian ini, luas daun \((cm^2) \), panjang tangkai \((cm) \) dan berat 30-
pucuk (kg) menunjukkan pekali variasi genetik (GCV) dan pekali variasi fenotip (PCV) adalah lebih daripada 20% dan keterwarisan adalah lebih daripada 40% di semua agro-ekologi menunjukkan ciri tersebut adalah sangat berguna sebagai asas pemilihan di dalam program pemaikbakaan keledak. Akhirnya, kajian ini mencadangkan MIB15 adalah sangat disyorkan untuk pengeluaran sayur berdaun dan ubi di pelbagai agro-ekologi. Sementara itu, MIB05 adalah disyorkan untuk pengeluaran hasil pucuk terutama bagi penanaman di tanah bris.
First my humble salutation to Lord Almighty, by His Grace and blessing able to complete this thesis. Second, my sincere appreciation to MARDI for sponsoring my master degree. This research was partly supported by Science Fund grant (05-03-08SF0126).

I would also like to express my deep appreciation to the chairman of my supervisory committee, Assoc. Prof. Dr. Mohd Rafii Yusop, for his patience, invaluable advice and guidance and endless encouragement throughout my graduate study. I would like to also thank my other committee member, Assoc. Prof. Dr. Mahmud Tengku Muda Mohamed, Department of Crop Science for his creditable suggestions and comments, close support on my thesis. Also my sincere thanks and gratitude to the following:

Dr. Indu Bala Jaganath from MARDI for constant motivation, encouragement and support.

Special thanks to the supporting staffs from MARDI for their invaluable help which enabled me to carry out the agro-ecology trials, they are: En. Badrul Hisham bin Abu Bakar (Serdang), En. Abdul Hamid bin Idris (Pontian), En. Mohd Rosli bin Ismail (Telong) and En. Mustafar bin Yaakob (Kundang).

Special thanks are conveyed to Dr. Habibuddin, Dr. Tan Swee Lian and Tn. Hj. Mansor bin Puteh for their encouragement and valuable comments on this project.
Special thanks to Ms. Gan Huang Huang from Applied Agricultural Research Sdn. Bhd. for assisting me on the use of GenStat software for AMMI analysis. Not forgetting Dr. Ahmad bin Selamat who have taught me on use of statistical analysis technique.

Finally, I would like to extend my greatest appreciation to my beloved late father, (Devarajan Dewudoo) and mother Saratha Devi Shanmugam for their love, inspiration, care and support.
APPROVAL

I certify that an Examination Committee has met on 27 APRIL 2012 to conduct the final examination of Thiyagu Devarajan on his M.Sc. thesis entitled “GENETIC DIVERSITY AND STABILITY ANALYSIS OF SWEETPOTATO GERMPLASM FOR LEAFY VEGETABLE” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the M. Sc.

Members of the Examination Committee were as follows:

Assoc. Prof. Dr. Mihdzar bin Abdul Kadir, PhD
Name of Chairperson, PhD

Name of Examiner 1, PhD
Assoc. Prof. Dr. Maheran Abd Aziz
Name of Examiner 2, PhD
Assoc. Prof. Dr. Mohd Ridzwan bin Abd Halim
Name of External Examiner
Dr. Abdul Rahim Harun

SHAMSUDDIN SULAIMAN, PhD
Professor and Deputy Dean
Schol of Graduate Studies
Universiti Putra Malaysia
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master Science. The members of the Supervisory Committee were as follows:

Mohd Rafii Yusop, PhD
Associate Professor
Faculty of Agriculture
University Putra Malaysia
(Chairperson)

Mahmud Tengku Muda Mohamed, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Mohd Said Saad, PhD
Sime Darby Research and Development Center
Banting, Selangor
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date :
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

THIYAGU DEVARAJAN

Date: 27 APRIL 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1

2. **LITERATURE REVIEW**
 2.1. Origin
 7
 2.2. Taxonomy
 9
 2.3. Botany
 10
 2.3.1. Reproductive system
 11
 2.4. Utilisation of sweetpotato
 12
 2.5. Sweetpotato production
 14
 2.6. Lutein content
 16
 2.7. Environment for growing sweetpotato
 17
 2.8. Planting and harvesting
 19
 2.9. Sweetpotato as leafy vegetable
 20
 2.10. Important traits for vegetable use
 22
 2.10.1. Organoleptic survey
 25
2.11. Genetic improvement of sweetpotato 26
2.12. Genotype by environment interaction 30
2.13. Statistical analysis of genotype by environment interaction 34
 2.13.1. Stability analysis 35
 2.13.2. Analysis of variance 35
 2.13.3. Genotype-grouping technique 37
 2.13.4. Ranking 38
 2.13.5. Multivariate techniques 39

3. EVALUATION OF TWENTY-TWO SWEETPOTATO GENOTYPES FOR VEGETABLE USE
 3.1. Introduction 42
 3.2. Materials and Methods 44
 3.2.1. Location and experiment design 45
 3.2.2. Preparation of planting materials 46
 3.2.3. Plot preparation 47
 3.2.4. Data collection 48
 3.2.5. Statistical analysis 55
 3.3. Results 57
 3.3.1. General statistics for phenotypic and organoleptic characters 57
 3.3.2. Morphological traits 58
 3.3.3. Yield and yield components 66
 3.3.4. Organoleptic characters 72
 3.3.5. ANOVA, variance components and heritability estimates for morphological characters 74
 3.3.6. ANOVA, variance components and heritability estimates for yield and yield components 77
 3.3.7. ANOVA for organoleptic 81
 3.3.8. Dendogram 83
 3.4. Discussion 85
 3.5. Conclusion 92
4. GENOTYPE BY ENVIRONMENT INTERACTIONS OF SELECTED SWEETPOTATO GENOTYPES IN EIGHT AGRO-ECOLOGIES FOR VEGETABLE USE

4.1. Introduction 93
4.2. Materials and Methods 95
 4.2.1. Planting materials 95
 4.2.2. Locations and Experimental Design 95
 4.2.3. Data collection 97
 4.2.4. Climatic data 98
 4.2.5. Statistics analysis 99
4.3. Results 104
 4.3.1. General statistics of morphological traits 107
 4.3.2. General statistics of shoot yields 107
 4.3.3. General statistics of root yields 108
 4.3.4. Genotype means, ANOVA and variance components of morphological traits 109
 4.3.5. Genotype means, ANOVA and variance components of shoot yields 117
 4.3.6. Genotype means, ANOVA and variance components of root yields 134
 4.3.7. ANOVA and variance components of combined agro-ecologies for morphological traits 145
 4.3.8. Components of variance and heritability estimation 154
 4.3.9. Stability analysis 172
 4.3.10. Additive main effects and multiplicative interaction (AMMI) model 187
4.4. Discussion 245
4.5. Conclusion 253

5. GENERAL CONCLUSION 258
REFERENCES/ BIBLIOGRAPHY 261
APPENDICES 274
BIODATA OF STUDENT 308