MICROENCAPSULATION of Bifidobacterium pseudocatenulatum G4 USING NATURAL MATRICES

KHALILAH ABDUL KHALIL

FBSB 2012 10
MICROENCAPSULATION of *Bifidobacterium pseudocatenulatum* G4 USING NATURAL MATRICES

KHALILAH ABDUL KHALIL

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2012
MICROENCAPSULATION of *Bifidobacterium pseudocatenulatum* G4 USING NATURAL MATRICES

By

KHALILAH ABDUL KHALIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

July 2012
Dedicated to…..

My beloved mother, Rahmah, my dearest husband, Awis Qurni, and my adorable children, Shahira, Ammar, Ammir and Amsyar. As well goes to teachers, researchers, scientists and peoples who contribute the knowledge in this field.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

MICROENCAPSULATION of Bifidobacterium pseudocatenulatum G4 USING NATURAL MATRICES

By

KHALILAH ABDUL KHALIL

July 2012

Chairman: Associate Professor Shuhaimi Mustafa, PhD

Faculty : Biotechnology and Biomolecular Sciences

Probiotic cultures, nowadays, are widely used in food products for health enhancement. Low survivability of probiotic cultures in acidic environment such as in the stomach region has limited their potential benefits. The possibility of using encapsulation method to improve the survivability of probiotic bacterium, Bifidobacterium pseudocatenulatum G4 (G4), during passage through the gastrointestinal tract was investigated in this study. Bovine and fish gelatin with the combination of genipin (a plant extract) and sodium alginate were used as encapsulating matrices. The study was accomplished through the following approaches: 1) formulation of medium based on skim milk and yeast extract for development of active inoculum for G4 cultivation; 2) optimization of inoculum medium prior to subsequent fermentation, 3) optimization of the encapsulation matrices for improvement of encapsulation yield (%) and beads strength (g) before and after being exposed to simulated gastric (SGF) and intestinal fluids (SIF), and 4) determination of cell release activities based on swelling rate (%),
release activity (OD), survival assay (cfumL$^{-1}$) and beads morphology using scan electron microscope (SEM) during exposures to SGF and SIF.

The use of 2 and 4% (w/v) skim milk as inoculum medium has elevated only 1 log cfumL$^{-1}$ after 24 h of cultivation. Skim milk concentration ranging from 6 to 10% (w/v) greatly enhanced cell growth with more efficient carbon and free amino nitrogen usage as well as higher production of β-galactosidase. Through statistical modeling based on the Face Centered Central Composite Design (FCCD), the optimum concentration of combined skim milk and yeast extract was determined as 7.02 and 1.73% (w/v), respectively. A validation experiment proved that the predicted and experimented values were not significantly different ($p > 0.05$). Substantial improvement in biomass production (11.72 cfumL$^{-1}$) was achieved in cultivation with optimized medium in 2-L stirred tank bioreactor for 18 h, and this biomass production was not statistically different ($p > 0.05$) as compared to the cultivation using commercial inoculum medium.

FCCD was also employed for the optimization of encapsulating matrices. The optimum concentration for bovine gelatin-genipin-alginate was predicted at 11.21% (w/v), 13.96 mM and 2.60% (w/v), respectively. While, in the case of fish gelatin-genipin-alginate, combined matrices at 12.57% (w/v), 19.12 mM and 5% (w/v) was predicted to generate optimum responses. Upon verification, experimental data of bovine gelatin-genipin-alginate and fish gelatin-genipin-alginate remained close value to the predicted data with low error for all the responses. As compared to porcine-genipin-alginate encapsulating matrices, the optimized bovine and fish gelatin-genipin-alginate have both demonstrated lower strength ($p < 0.05$) after SIF exposure.
The performances of the optimized bovine gelatin-genipin-alginate and fish gelatin-genipin-alginate in protecting G4 and other probiotics were also determined. Eight groups of encapsulating matrices were evaluated: 1) optimized bovine gelatin-genipin-alginate, 2) optimized fish gelatin-genipin-alginate, 3) porcine gelatin-genipin-alginate, 4) optimized bovine gelatin-alginate, 5) optimized fish gelatin-alginate, 6) porcine gelatin-alginate, 7) alginate alone, 8) free cell (unencapsulate). Low encapsulation yield was observed in groups 2 and 5, respectively. Meanwhile group 1 showed highest in encapsulation yield. Slow swelling rate during the SGF exposure was shown by group 1, 3, 4 and 6 while groups 5 was demonstrated progressive swelling and slightly erode at 120 min of exposure. The releases of cells occur when the beads disintegrate and these were observed through the cells release activity analysis. All groups were presented positive performance in releasing cells into the intestinal region with higher optical density and lower survivability of entrapped cells obtained under SIF exposure except for groups 3 and 6, respectively. Factors like gelatin source, bloom strength and the presence of alginate played important roles in stabilizing the chemical cross link of the gelatin especially in acidic environment. Encapsulations of both bovine and fish gelatin with genipin and alginate combinations have successfully improved the survival and cells release and this approach could potentially be useful in replacing porcine gelatin for the delivery of probiotic culture to the target area in the intestinal region.
Abstrak tesis yang dikemukakan Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MIKROENKAPSULASI *Bifidobacterium pseudocatenulatum* G4 MENGGUNAKAN MATRIKS ASLI

Oleh

KHALILAH ABDUL KHALIL

Julai 2012

Pengerusi: Profesor Madya Shuhaimi Mustafa, PhD

Fakulti : Bioteknologi and Sains Biomolekul

Pada masa sekarang, kultur probiotik digunakan secara meluas di dalam produk makanan untuk tujuan kesehatan. Akan tetapi, tahap kehidupan probiotik kultur ini adalah rendah di dalam persekitaran berasid seperti di dalam perut. Oleh itu, kaedah enkapsulasi dikaji untuk melihat potensi bagi memperbaiki tahap kehidupan probiotik, *Bifidobacterium pseudocatenulatum* G4, semasa melalui sistem pencernaan. Kombinasi bahan enkapsulasi seperti gelatin lembu dan ikan bersama genipin (ekstrak tumbuhan) dan sodium alginat telah digunakan. Kajian ini melibatkan beberapa peringkat seperti: 1) meningkatkan pengaktifan inokula G4 dengan mencari formulasi susu skim and ekstrak yis yang sesuai sebagai persediaan media untuk inokula, 2) mengoptimasikan media tersebut bagi meningkatkan populasi G4 sebelum proses penapaian yang selanjutnya, 3) mengoptimasikan kombinasi bahan enkapsulasi yang digunakan berdasarkan kadar enkapsulasi sel (%) dan kekuatan kapsul yang dihasilkan (g) sebelum dan selepas pendedahan kepada bendalir gastrik (SGF) dan pencernaan (SIF), 4) mengkaji aktiviti pelepasan sel probiotik ketika di dalam SGF dan SIF berdasarkan kadar pembengkakan kapsul (%), analisa pelepasan sel (OD), kadar
tahap kehidupan sel di dalam kapsul (cfumL⁻¹) dan perubahan bentuk kapsul dengan menggunakan mikroskop imbasan elektron (SEM).

Penggunaan 2 dan 4% (w/v) susu skim sebagai media pengaktifan inokula hanya memberi peningkatan sel sebanyak 1 log₁₀ cfumL⁻¹ selepas 24 jam kultivasi. Sebaliknya, kepekatan susu skim dari 6 hingga 10% (w/v), memberi penambahan bilangan sel yang besar dengan penggunaan karbon dan amino nitrogen yang cekap serta penghasilan β-galaktosidase yang tinggi. Model statistik berdasarkan “Face Centered Central Composite Design” (FCCD) memberi titik optima kepekatan bagi susu skim dan ekstrak yis iaitu 7.02 dan 1.73% (w/v). Validasi eksperimen membuktikan yang nilai ramalan dan eksperimen yang dijalankan tiada perbezaan ketara (p > 0.05). Peningkatan yang tinggi dalam penghasilan sel (11.72 cfumL⁻¹) tercapai di dalam bioreaktor 2-L selepas 18 jam kultivasi dan peningkatan ini tiada perbezaan statistik (p > 0.05) dengan sel yang diaktifkan menggunakan media komersial.

FCCD juga digunakan untuk mengoptimasikan bahan enkapsulasi. Titik optima kepekatan untuk gelatin lembu-genipin-alginat adalah pada 11.21% (w/v), 13.96 mM dan 12.57% (w/v). Manakala, gelatin ikan-genipin-alginat ialah pada 12.57% (w/v), 19.12 mM dan 5% (w/v) untuk memberi kesan yang optima. Berdasarkan verifikasi, nilai eksperimen bagi kapsul yang dioptimakan tidak menunjukkan perbezaan besar dengan nilai ramalan. Perbandingan dibuat dengan kapsul dari gelatin khinzir-genipin-alginat dan menunjukkan kapsul gelatin lembu-genipin-alginat dan gelatin ikan-genipin-alginat yang dioptimakan memberi kesan kekuatan yang rendah berbanding dengan kapsul gelatin khinzir-genipin-alginat apabila didedahkan kepada SIF.
Tahap perlindungan bagi G4 dan probiotik lain dengan menggunakan bahan enkapsulasi yang dioptimakan telah dikaji. Lapan formulasi bahan enkapsulasi yang dioptimakan melibatkan: 1) gelatin lembu-genipin-alginat, 2) gelatin ikan-genipin-alginat, 3) gelatin khinzir-genipin-alginat, 4) gelatin lembu-alginat, 5) gelatin ikan-alginat, 6) gelatin khinzir-alginat, 7) alginat sahaja, 8) sel bebas (tidak dienkapsulasikan). Kadar enkapsulasi sel yang rendah telah diperolehi dari kumpulan 2 dan 5. Manakala, kumpulan 1 menunjukkan kadar enkapsulasi sel yang paling tinggi. Kadar pembengkakan yang rendah telah dilihat dari kumpulan 1, 3, 4 dan 6, manakala kumpulan 5 menunjukkan pembengkakan yang cepat setelah 120 minit di dalam SGF. Pembebasan sel berlaku apabila kapsul mula pecah dan ini boleh dilihat menerusi analisa aktiviti pembebasan sel. Kesemua kumpulan kecuali kumpulan 3 dan 6, menunjukkan kesan positif di dalam membebaskan sel ketika dalam SIF dengan menunjukkan nilai ketumpatan optik (OD) yang tinggi dan tahap kehidupan sel tertinggal di dalam kapsul adalah rendah. Faktor seperti jenis gelatin, kekuatan “bloom” dan penggunaan alginat memainkan peranan penting dalam penstabilan gelatin struktur kimianya terutama ketika di dalam persekitaran yang berasid. Enkapsulasi menggunakan gelatin lembu dan ikan dapat memperbaiki tahap kehidupan dan pembebasan sel serta berpotensi untuk mengantikan penggunaan kapsul dari gelatin khinzir untuk penghantaran probiotik kultur ke tempat sasaran di dalam usus.
AKNOWLEDGEMENT

First and foremost, GOD ALMIGHTY for give strength and courage to face the challenges I encountered throughout this course.

I would like to give my sincere thanks to my supervisor and all co-supervisors for their advice, support and guidance, will always be highly appreciated.

My friends especially from lab 202, Biotech 2 for always accompanied me during overnight experiments.

Universiti Teknologi MARA (UiTM) and Malaysia Ministry of High Education for financial support.

Last but not least, my dearest husband (Awis Qurni), my beloved mom (Rahmah) and lovely kids (Shahira, Ammar, Amir and Amsyar) deserve thanks for their inspiration, encouragement, kindness, understanding and patience throughout my whole studies.
APPROVAL

I certify that a Thesis Examination Committee has met on 5th July 2012 to conduct the final examination of Khalilah Abdul Khalil on her thesis entitled “Enhanced survivability of *Bifidobacterium pseudocatenulatum* G4 by encapsulation using gelatin-genipin-alginate matrices” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor Philosophy.

Member of the Examination Committee were as follows:

Muhajir bin Hamid, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Umi Kalsom binti Md Shah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Noraini binti Abdul Rahman, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Satya Prakash, PhD
Professor
Biomedical Engineering, Faculty of Medicine
McGill University
Quebec, Canada
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Shuhaimi Mustafa, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Arbakariya Ariff, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mohd Yazid Abd Manap, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Rosfarizan Mohamad, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that is has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

KHALILAH ABDUL KHALIL

Date: 5 July 2012
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>AKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii-xx</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi-xxiv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii-xxix</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW

 2.1 Intestinal Microflora

 2.2 Probiotic
 2.2.1 Suitable Dosage of Probiotics for Health Benefits
 2.2.2 Antagonistic and Other Effects of Probiotic
 2.2.3 Probiotic Criteria
 2.2.4 Probiotic Applications
 2.2.5 Probiotic Challenges
 2.2.6 *Bifidobacterium pseudocatenulatum* G4 as a Potential Probiotic

 2.3 Milk as Probiotic Cultivation Media

 2.4 Technologies in Improving Probiotic Shelf Life

 2.5 Cells Encapsulation
 2.5.1 Encapsulation Methods
 2.5.1.1 Extrusion
 2.5.1.2 Emulsification
 2.5.1.3 Atomization
 2.5.2 Encapsulation Approach for Enhancing Probiotic Viability
 2.5.2.1 Starter Cultures Preparation
 2.5.2.2 Fermentation
 2.5.2.3 Food Matrix
 2.5.2.4 Various Encapsulating Matrices Used for Cells Protection During Gastrointestinal Tract Passage
2.5.3 Encapsulation Matrices
 2.5.3.1 Alginate
 2.5.3.2 Gelatin
 2.5.3.3 Genipin

3 METHODOLOGY
3.1 *Bifidobacterium* Strains 38
3.2 Inoculum Preparation 38
3.3 Macroscopic and Microscopic Confirmation 39
3.4 Further Confirmation Using 16s rRNA-Gene-Targeted Primers
 3.4.1 Bacterial Strains 39
 3.4.2 DNA Extraction 39
 3.4.3 Genus-Specific PCR 40
 3.4.4 Species-Species PCR 41
 3.4.5 Gel Electrophoresis 42
3.5 Medium Preparation in Schott bottle 43
3.6 Fermentation in 2-L Stirred Tank Bioreactor
 3.6.1 Set up and Geometry of 2-L Stirred Tank Bioreactor 44
 3.6.2 Fermentation Preparation 45
3.7 *B. pseudocatenulatum* G4 Preparation for Encapsulation 45
 3.7.1 Cultivation 46
3.8 Encapsulation of *B. pseudocatenulatum* G4 46
3.9 Preparation of Simulated Gastric Fluid (SGF) 49
3.10 Preparation of Simulated Intestinal Fluid (SIF) 49
3.11 Analytical Techniques
 3.11.1 Microbiological Analysis 50
 3.11.2 Growth Studies 50
 3.11.3 Organic Acids analysis 51
 3.11.4 Sugar Analysis 51
 3.11.5 Free Amino Nitrogen Analysis 52
 3.11.6 β-galactosidase Analysis 53
 3.11.7 Enumeration of Encapsulated Cells 54
 3.11.8 Beads Strength Determination 55
 3.11.9 Beads Stability in SGF and SIF 56
 3.11.10 Encapsulated Cells Released in SGF and SIF 57
 3.11.11 Survival Assay of Encapsulated Cells in SGF and SIF 57
 3.11.12 Beads Surface Morphology Observation Using Scanning Electron Microscope (SEM) 58
 3.11.13 Statistical Analysis 59
3.13 Experimental Flow Chart 60
4 GROWTH CHARACTERISTICS OF B. pseudocatenulatum G4 IN MILK BASED INOCULUM MEDIUM PRIOR TO FURTHER FERMENTATION

4.1 Introduction 61
4.2 Materials and Methods 63
4.3 Results and Discussion
 4.3.1 Morphology Observation 65
 4.3.2 Confirmation of B. pseudocatenulatum G4 Using 16S rRNA-Gene-Targeted Primers 67
 4.3.3 Cultivation of B. pseudocatenulatum G4 Using Standing Culture
 4.3.3.1 Growth and pH Changes 69
 4.3.3.2 Organic Acids Production 73
 4.3.3.3 Sugar Metabolism 77
 4.3.3.4 Determination of β-galactosidase Production 81
 4.3.3.5 Free Amino Nitrogen Analysis 86
 4.3.3.6 Growth Performance of B. pseudocatenulatum G4 in 2-L Stirred Tank Bioreactor
 4.3.3.7 β-galactosidase Production 94
4.4 Conclusions 99

5 OPTIMIZATION OF SKIM MILK BASED INOCULUM MEDIUM FOR Bifidobacterium pseudocatenulatum G4 CULTIVATION PRIOR TO FERMENTATION USING RESPONSE SURFACE METHODOLOGY

5.1 Introduction 100
5.2 Materials and Methods 102
5.3 Results and Discussion
 5.3.1 Initial Screening of Significant Medium Components and Steepest Ascent 106
 5.3.2 Optimization of Medium Components
 5.3.2.1 Biomass Production Response (y1) 111
 5.3.2.2 β-galactosidase Production Response (y2) 116
 5.3.2.3 Lactose Residue Response (y3) 120
 5.3.2.4 FAN Residue Response (y4) 122
 5.3.3 Validation of Optimized Medium 126
 5.3.4 Performance of G4 from Optimized Medium During Fermentation in 2-L Stirred Tank Bioreactor 127
5.4 Conclusions 129
6 OPTIMIZATION OF ENCAPSULATING MATRICES FOR
Bifidobacterium pseudocatenulatum G4 USING BOVINE/
FISH GELATIN WITH GENIPIN-SODIUM ALGINATE
COMBINATIONS BASED ON RESPONSE SURFACE
METHODOLOGY
6.1 Introduction 131
6.2 Materials and Methods 133
6.3 Results and Discussion
 6.3.1 Bovine Gelatin, Genipin and Sodium Alginate
 6.3.1.1 Screening for Encapsulation Matrices 137
 6.3.1.2 Optimization Using Face-Centered Full
 Factorial Design (FCCD) 144
 6.3.1.3 Verification 162
 6.3.2 Fish gelatin, Genipin and Sodium Alginate.
 6.3.2.1 Screening for the Encapsulation Matrices 163
 6.3.2.2 Optimizing Using Face-Centered Full
 Factorial Design (FCCD) 167
 6.4.2.3 Verification 185
 6.3.3 Comparison Performances of Both Optimized
 Encapsulation Matrices
 6.3.3.1 Beads Strength (g) 187
 6.3.3.2 Encapsulation Yield (%) 188
6.4 Conclusions 189

7 CELLS RELEASE FROM OPTIMIZED BOVINE AND FISH
GELATIN WITH THE COMBINATION OF ALGINATE-
GENIPIN MATRICES
7.1 Introduction 191
7.2 Materials and Methods 192
7.3 Results and Discussion
 7.3.1 Encapsulation Yield of Probiotic Cells 194
 7.3.2 Beads Stability
 7.3.2.1 Simulated Gastric Fluid (SGF) Exposure 198
 7.3.2.2 Simulated Intestinal Fluid (SIF) Exposure 203
 7.3.3 In vitro Release Studies of Probiotic from the Beads 206
 7.3.4 Survival of Entrapped Cells During Sequential
 Incubation in SGF and SIF
 7.3.4.1 Survival of Entrapped Cells in SGF 210
 7.3.4.2 Survival of Entrapped Cells in SIF 214
 7.3.5 SEM Observation 217
7.4 Conclusions 224
8 GENERAL DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS

REFERENCES
APPENDICES
BIODATA OF STUDENT
PUBLICATIONS