UNIVERSITI PUTRA MALAYSIA

FUZZY GENETIC ALGORITHMS FOR COMBINATORIAL OPTIMISATION PROBLEMS

MOHAMMAD JALALI VARNAMKHASTI

IPM 2012 1
FUZZY GENETIC ALGORITHMS FOR COMBINATORIAL OPTIMISATION PROBLEMS

By

MOHAMMAD JALALI VARNAMKHASTI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2012
DEDICATION

This thesis is dedicated to my parents for their endless love and encouragement. Also I lovingly dedicate this thesis to my wife, who supported me each step of my way, and my lovely kids, Mahdi and Mohaddeseh.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

FUZZY GENETIC ALGORITHMS FOR COMBINATORIAL OPTIMISATION PROBLEMS

By

MOHAMMAD JALALI VARNAMKHASTI

March 2012

Chair: LEE LAI SOON, PhD
Institute: Institute for Mathematical Research

The Genetic Algorithms (GAs) have been very successful in handling optimization problems which are difficult. However, the fundamental problem in GAs is premature convergence and it is strongly related to the loss of genetic diversity of the population. This thesis aims at proposing some technique to tackle the premature convergence of GAs by controlling the population diversity.

Firstly, a new sexual selection mechanism which utilizing mate chromosome during selection is proposed. The female chromosome is selected by standard tournament selection while the male chromosome is selected based on the hamming distance from the selected female chromosome, fitness value or the active genes.
Fuzzy Logic Controllers (FLCs) are considered as knowledge-based systems, incorporating human knowledge. The second technique focuses on controlling the GA parameters by applying the FLC, thus creating a new variant of GA called Fuzzy Genetic Algorithm (FGA). In each generation, the diversity of studied population is measured in terms of the phenotype and genotype properties. Then the selection of crossover and mutation operators together with their probabilities are achieved by running the FLCs based on the diversity of the population.

The proposed sexual selection and the FGAs are applied to combinatorial optimization problems specifically to those involving selection problems. We particularly focus on two problems: multidimensional 0/1 knapsack problems and p-median facility location problems. The goal of a multidimensional 0/1 knapsack is to boost the sum values of the items to be chosen from some specified set by means of taking multiple-resource restraints into consideration. In the p-median problem, the aim is to choose the positions of the $p$ facilities in order to cover $n$ demand points such that the summation of distances from each facility to each corresponding demand point is brought to a minimum.

Extensive computational experiments are carried out to assess the effectiveness of the proposed algorithms compared to other metaheuristic proposed in the literature. The computational results shown that, the proposed sexual selection and FGAs are competitive and capable of generating near optimal solutions.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

ALGORIMA GENETIK KABUR UNTUK MASALAH PENGOPTIMUMAN KOMBINATORIK

Oleh

MOHAMMAD JALALI VARNAMKHASTI

Mac 2012

Pengerusi: LEE LAI SOON, PhD

Institut: Institut Penyelidikan Matematik

Algoritma Genetik (AGs) telah berjaya mengendalikan masalah pengoptimuman yang sukar. Walau bagaimanapun, masalah asas dalam AG ialah penumpuan pramasa dan ia amat berkaitan dengan kehilangan kepelbagaian genetik populasi. Tesis ini bertujuan untuk mencadangkan beberapa teknik untuk menangani penumpuan pramasa AG dengan mengawal kepelbagaian populasi.

Pertama sekali, mekanisme pemilihan seksual baharu yang menggunakan kromosom teman semasa pemilihan dicadangkan. Kromosom betina dipilih melalui pemilihan pertandingan klasik sementara kromosom jantan dipilih berdasarkan
jarak Hamming daripada kromosom betina yang dipilih, nilai kesesuaian atau gen aktif.


Pemilihan seksual yang dicadangkan dan AGK telah digunakan pada masalah pengoptimuman kombinatorik secara khususnya yang melibatkan masalah pemilihan. Kami secara khususnya memberi tumpuan terhadap dua masalah: masalah knapsack 0/1 berbilang dimensi dan masalah lokasi kemudahan p-median. Matlamat knapsack 0/1 berbilang dimensi adalah untuk merangsang nilai hasil tambah item untuk dipilih daripada beberapa set yang dinyatakan dengan mengambil kira pengekangan berbilang sumber. Dalam masalah p-median, tujuan untuk memilih kedudukan kemudahan p bagi meliputi titik tuntut sehingga perjumlahan jarak dari setiap kemudahan ke setiap titik tuntut yang sepadan diminimumkan.
Ujikaji berkomputasi yang menyeluruh dijalankan untuk menilai keberkesanan algoritma yang dicadangkan berbanding dengan metaheuristik yang dicadangkan di dalam ilmiah. Hasil berkomputasi menunjukkan bahawa, pemilihan seksual yang dicadangkan dan AGK adalah kompetitif dan mampu menjana penyelesaian hampir optimum.
ACKNOWLEDGEMENTS

First of all, I would like to thank Allah, for giving me the strength, guidance and patience to complete this thesis.

This thesis is the result of almost four years of work and I would like to thank several people for their helps and supports during my thesis work.

I would like to express my sincere appreciation to my principal supervisor, Dr. Lee Lai Soon, for his advice, guidance and constant encouragement throughout this research. His broad knowledge and deep understanding of the field were instrumental in initiating this research topic and were a great help in accomplishing this research effort.

I would like to thank the members of supervisory committee, Assoc. Prof. Dr. Mohd Rizam Abu Bakar, Assoc. Prof. Dr. Mohd Hamiruce Marhaban and Assoc. Prof. Dr. Leong Wah June.

My deepest gratitude and love is to my parents, brothers and sister, for their encouragements, and prayers towards my success.
Last but not least, I am especially grateful to my dearest wife, and my lovely kids Mahdi and Mohadeseh who are my constant inspiration for their patience, love, unwavering support and understanding during this study.
I certify that an Thesis Examination Committee has met on 08 March 2012 to conduct the final examination of MOHAMMAD JALALI VARNAMKHASTI on his thesis entitled “Fuzzy Genetic Algorithms For Combinatorial Optimisation Problems” in accordance with Universities and University Colleges 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 1989 The Committee recommends that the student be awarded the Doctor of Philosophy.

Member of the Thesis Examination Committee were as follows:

**Zanariah binti Abdul Majid, PhD**
Associate Professor
Fakulti Sains
Universiti Putra Malaysia
43400 UPM Serdang Selangor

**Norihan binti Md Arifin, PhD**
Associate Professor
Jabatan Matematik
Fakulti Sains
Universiti Putra Malaysia
43400 UPM Serdang Selangor

**Mansor bin Monesi, PhD**
Associate Professor
Fakulti Sains
Universiti Putra Malaysia
43400 UPM Serdang Selangor

**Christopher Nigel Potts, PhD**
Professor
School of Mathematics
Faculty of Social and Human Science
University of Southampton
United Kingdom

---

**BUJANG KIM HUAT, PhD**
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follows:

Lee Lai Soon, PhD  
Senior Lecture  
Faculty of Science  
Universiti Putra Malaysia  
(Chairman)

Mohd Rizam Abu Bakar, PhD  
Associate Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Member)

Leong Wah June, PhD  
Associate Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Member)

Mohd Hamiruce Marhaban, PhD  
Associate Professor  
Faculty of Engineering  
Universiti Putra Malaysia  
(Member)

BUJANG KIM HUAT, PhD  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia  

Date:
DECLARATION

I declare that the thesis is my original work except the sources cited have been used in this thesis. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

____________________________
Mohammad Jalali Varnamkhasti

Date: 8 March 2012
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
</tbody>
</table>

## CHAPTER

### 1 INTRODUCTION

1.1 Background                        | 1    |
1.2 Problem Statement                 | 4    |
1.3 Objectives of the Research        | 6    |
1.4 Organisation of the thesis        | 7    |

### 2 LITERATURE REVIEW

2.1 Introduction                      | 9    |
2.2 Genetic Algorithm                 | 9    |
2.1.1 Encoding                        | 11   |
2.2.2 Population Size                 | 14   |
2.2.3 Fitness Evaluation              | 14   |
2.2.4 Selection Mechanism             | 15   |
2.2.4.1 Fitness Proportionate         | 17   |
2.2.4.2 Tournament                    | 18   |
2.2.4.3 Linear Ranking                | 19   |
2.2.4.4 Stochastic Universal Sampling | 20   |
2.2.4.5 Truncation Selection          | 20   |
2.2.4.6 Sexual Selection              | 21   |
2.2.5 Crossover Operator              | 25   |
2.2.5.1 Binary Encoding               | 26   |
2.2.5.2 Integer Encoding              | 28   |
2.2.6 Mutation Operator               | 32   |
2.2.6.1 Binary Encoding               | 33   |
2.2.6.2 Integer Encoding              | 34   |
2.2.7 Replacement Strategy            | 38   |
2.2.7.1 Restricted Tournament Selection| 40   |
2.2.7.2 Worst Among Most Similar Replacement Policy | 41 |
2.2.7.3 Family Competition Replacement Schemes | 41 |
2.3 Fuzzy Genetic Algorithm           | 42   |
2.4 Population Diversity              | 48   |

### 3 COMBINATORIAL OPTIMISATION PROBLEMS STUDIED

3.1 Introduction                      | 59   |
3.2 Multidimensional 0–1 Knapsack Problems 60
3.2.1 Solution Method to the Knapsack Problems 61
   3.2.1.1 Exact Methods 61
   3.2.1.2 Heuristic Methods 66
   3.2.1.3 Metaheuristic Methods 70
3.3 P-Median Facility Location Problems 73
3.3.1 Solution Method to the P-Median Facility Location Problems 74
   3.3.1.1 Exact Methods 75
   3.3.1.2 Heuristic Methods 76
   3.3.1.3 Metaheuristic Methods 77

4 SEXUAL SELECTION AND FUZZY GENETIC ALGORITHM 83
4.1 Introduction 83
4.2 Population Diversity 85
4.3 Sexual Selection 91
   4.3.1 Binary Encoding 94
   4.3.2 Integer Encoding 95
4.4 Fuzzy Crossover Operator Selection 96
   4.4.1 Binary Encoding 98
   4.4.2 Integer Encoding 104
4.5 Fuzzy Crossover Probability Selection 108
4.6 Fuzzy Mutation Operator Selection 111
   4.6.1 Binary Encoding 112
   4.6.2 Integer Encoding 120
4.7 Fuzzy Mutation Probability Selection 122
4.8 Replacement Strategy 129

5 SEXUAL SELECTION AND FUZZY GENETIC ALGORITHM FOR MULTIDIMENSIONAL 0/1 KNAPSACK PROBLEMS 131
5.1 Introduction 131
5.2 Fuzzy Genetic Algorithm with Sexual Selection 132
5.3 Fuzzy Rules 136
5.4 Competitors 139
   5.4.1 Genetic Algorithm by Chu and Beasley 140
   5.4.2 Heuristic Algorithm by Magazine and Oguz 140
   5.4.3 Heuristic Algorithm by Volgenant and Zoon 142
   5.4.4 Heuristic Algorithm by Pirkul 144
   5.4.5 Simulated Annealing by Qian and Ding 145
5.5 Computational Experiments 148
   5.5.1 Experimental Design 149
   5.5.2 Computational Results of Comparison Selection Mechanisms 150
   5.5.3 Computational Results of FGA based on Crossover Operator and Probability Selection Technique 153
5.5.4 Computational Results of FGA based on Mutation Operator and Probability Selection Technique 157
5.5.5 Comparison of FGA with Competitors 160

6 SEXUAL SELECTION AND FUZZY GENETIC ALGORITHM FOR P-MEDIAN FACILITY LOCATION PROBLEMS 164
6.1 Introduction 164
6.2 Fuzzy Genetic Algorithm with Sexual Selection 166
6.3 Fuzzy Rules 169
6.4 Competitors 171
6.4.1 Genetic Algorithm by Alp et al. 171
6.4.2 Simulation Annealing by Chiyoshi and Galvao 173
6.4.3 Variable Neighbourhood Decomposition Search by Hansen, et al. 174
6.5 Computational Experiments 176
6.5.1 Experimental Design 177
6.5.2 Computational Results of Comparison Selection Mechanisms 178
6.5.3 Computational Results of FGA based on Crossover Operator and Probability Selection Technique 182
6.5.4 Computational Results of FGA based on Mutation Operator and Probability Selection Technique 186
6.5.5 Comparison of FGA with Competitors 189

7 CONCLUSION AND FUTURE RESEARCH 192
7.1 Conclusions 192
7.2 Future Direction 195

REFERENCES 197
BIODATA OF STUDENT 213
LIST OF PUBLICATIONS 214